1.

R. Rabenstein, “A signal processing approach to the numerical solution of partial differential equations,” in*NTG-Fachbericht* 84, Berlin: VDE-Verlag, 1983.

2.

R. Rabenstein, “A signal processing approach to the digital simulation of multidimensional continuous systems,” Proc. Eur. Signal Processing Conf., Part 2, The Hague, The Netherlands, Amsterdam: North Holland 1986, pp. 665–668.

3.

A. Fettweis, “Wave digital filters: Theory and practice,”

*Proc. IEEE*, vol. 74, 1986, pp. 270–327.

CrossRef4.

A. Fettweis, “New results in wave digital filtering,”*Proc. URSI Int. Symp. on Signals, Systems, and Electronics*, Erlangen, W. Germany, 1989: pp. 17–23.

5.

A. Fettweis and G. Nitsche, “Numerical integration of partial differential equations by means of multidimensional wave digital filters,”

*Proc. IEEE Int. Symp. Circuits and Systems*, vol. 2, New Orleans, LA, May 1990, pp. 954–957.

CrossRef6.

H.D. Fischer, “Wave digital filters for numerical integration,”*ntz-Archiv*, vol. 6, 1984, pp. 37–40.

7.

K. Meerkötter and R. Scholz “Digital simulation of nonlinear circuits by wave digital filters,”

*Proc. IEEE Int. Symp. Circuits and Systems*, vol. 1, Portland, OR, 1989, pp. 720–723.

CrossRef8.

A. Fettweis, “On assessing robustness of recursive digital filters,”

*European Transactions on Telecommunications*, vol. 1, 1990, pp. 103–109.

CrossRef9.

B.J. Alder, “Special Purpose Computers,” San Diego: Academic Press, 1988.

MATH10.

Xiaojian Liu and Alfred Fettweis, “Multidimensional digital filtering by using parallel algorithms based on diagonal processing,”

*Multidimensional Systems and Signal Processing*, vol. 1, 1990, pp. 51–56.

CrossRefMATH11.

P.B. Johns and R.L. Beurle, “Numerical solution of 2-dimensional scattering problems using a transmission-line matrix,”*Proc. IEE*, vol. 118, No. 9, 1971, pp. 1203–1208.

12.

P.B. Johns, “A Symmetrical Condensed Node for the TLM Method,”

*IEEE Trans. Microwave Theory Tech.*, vol MTT-33, 1985, pp. 882–893.

CrossRef13.

Tatsuo Itoh,*Numerical Techniques for Microwave and Millimeter-Wave Passive Structures*, New York: J. Wiley, 1989.

14.

Wolfgang Hoefer, “The transmission line matrix (TLM) method,” in*Numerical Techniques for Microwave and Millimeter-Wave Passive Structures* (T. Itoh, ed.), 1989, pp. 496–591.

15.

K.S. Yee, “Numerical solution of initial bondary value problems involving Maxwell's equations in isotropic media,”

*IEEE Trans. Antennas Propagat.*, vol. AP-14, 1966, pp. 302–307.

CrossRefMATH16.

A. Taflove and M.E. Brodwin, “Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations,”

*IEEE Trans. Microwave Theory Tech.*, vol. MTT-23, 1975, pp. 623–630.

CrossRef17.

T. Weiland, “On the unique numerical solution of Maxwellian eigenvalue problems in three dimensions,”*Particle Accelerators*, vol. 17, 1985, pp. 227–242.

18.

K. Meerkötter, “Incremental passivity of wave digital filters,”*Proc. Eur. Signal Processing Conference*, Lausanne, Switzerland, Amsterdam: North Holland, 1980, pp. 27–31.

19.

A. Fettweis, “Passivity and losslessness in digital filtering,”*Arch. Elektron. Übertr.*, vol. 42, 1988, pp. 1–8.

20.

V. Belevitch,*Classical Network Theory*, San Francisco: Holden-Day, 1967.

21.

A. Kummert and M. Pätzold, private communication, 1989.

22.

W. Hackbusch,

*Multi-grid Methods and Applications*, Berlin: Springer-Verlag, 1985.

CrossRefMATH23.

R.E. Crochiere and L.R. Rabiner,*Multirate Digital Signal Processing*, Englewood Cliffs, NJ: Prentice Hall, 1983.

24.

A.A. Samarskij,*Theorie der Differenzenverfahren*, Leipzig: Akademische Verlagsgesellschaft, 1984.

25.

A. Fettweis and K. Meerkötter, “On adaptors for wave digital filters,”

*IEEE Trans. Acoust., Speech, Signal Processing*, vol. ASSP-23, 1975, pp. 516–525.

CrossRef