Skip to main content
Log in

Baroclinic energetics and zonal plane distribution of monsoon disturbances

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

The adiabatic, quasi-geostraphic, 25-layer, numerical, linear model with Ekman boundary layer friction is utilised to perform the baroclinic stability analysis of the mean monsoon zonal wind profile. It is shown thec i is a function of the resultant wavenumber alone. This relation is able to explain the effects of the lateral walls on the unstable waves.

The energetics and zonal plane distribution of the short and long preferred viscous waves are computed. The upward motion of the short wave together with the warm (cold) core lies to the west of the surface trough position above (below) 850 mb. Further, it is shown that the main source of kinetic energy for the wave lies in the middle layer (850–700 mb) which is transported to the lower and upper layers. Computed\(\overline {v'T'} \) is found to be in good agreement with observed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chang, C. P. (1971),On the stability of low latitude quasi-geostrophic flow on a conditionally unstable atmosphere, J. Atmos. Sci.28, 270–274.

    Google Scholar 

  • Charney, J. G. andEliasen, A. (1949),A numerical method for predicating the perturbation of the middle latitude westerlies. Tellus1, 30–54.

    Google Scholar 

  • Charney, J. G. andStern, M. E. (1962),On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci.19, 159–172.

    Google Scholar 

  • Colton, D. E. (1973),Barotropic scale interactions in the tropical upper troposphere during the northern summer.J. Atmos. Sci. 30, 1287–1302.

    Google Scholar 

  • Daggupaty, S. M., andSikka, D. R. (1977),On the vorticity budget and vertical velocity distribution associated with the life cycle of a monsoon depression. J. Atmos. Sci.34, 773–792.

    Google Scholar 

  • Estoque, M. A. andLin, M. S. (1977),Energetics of easterly waves. Mon. Wea. Rev.105, 582–589.

    Google Scholar 

  • Godbole, R. V. (1977),The composite structure of the monsoon depression, Tellus29, 25–40.

    Google Scholar 

  • Kanamitsu, M., Krishnamurti, T. N., andDepradine, C. G. (1972),On scale interactions in the tropics during northern summer, J. Atmos. Sci.29, 698–706.

    Google Scholar 

  • Krishnamurti, T. N. (1971),Observational study of the tropical upper tropospheric motion field during the northern hemisphere summer, J. Appl. Meteor.10, 1066–1096.

    Google Scholar 

  • Krishnamurti, T. N., Kanamitsu, M., Godbole, R., Chang, C. B., Carr, F. andChow, J. (1975),Study of monsoon depression (I) synoptic structure. J. Meteor. Soc. Japan53, 227–240.

    Google Scholar 

  • Krishnamurti, T. N., Molinari, J., Pan, H. L., andWong, V. (1977),Numerical weather prediction relevant to the monsoon problem. Pure Appl. Geophys.115, 1357–1372.

    Google Scholar 

  • Mishra, S. K., andSalvekar, P. S. (1980),Role of baroclinic instability in the development of monsoon disturbances. J. Atmos. Sci.37, 383–394.

    Google Scholar 

  • Mishra, S. K., Subrahmanyam, D. andTandon, M. K. (1981),Divergent barotropic instability of the tropical asymmetric easterly jet. J. Atmos. Sci.38, 2164–2171.

    Google Scholar 

  • Mishra, S. K. andTandon, M. K. (1983),A combined barotropic-baroclinic instability study of the upper tropospheric tropical easterly jet. J. Atmos. Sci.40, 2708–2723.

    Google Scholar 

  • Moorthi, S. (1983),Baroclinic and Barotropic instability with cumulus heating and tropical cyclogenesis. Ph.D. Thesis, University of California, Los Angeles.

    Google Scholar 

  • Newell, R. E., Kidson, J. W., Vincent, D. G. andBoar, C. J. (1974),The general circulation of the tropical atmosphere and interactions with extra tropical latitudes. Vol. II MIT Press, Cambridge, Mass. and London. 371 pp.

    Google Scholar 

  • Phillips, N. A. (1956),The general circulation of the atmosphere: A numerical experiment. Quart. J. Rov. Meteor. Soc.82, 123–164.

    Google Scholar 

  • Rao, K. V., Rao, G. S. P. andRajamani, S. (1978),Diagnostic study of a monsoon depression. Indian J. Meteor, Hydrol. Geophys.29, 260–271.

    Google Scholar 

  • Robert, A. J. (1966),The integration of low order spectral form of the primitive meteorological equations.J. Meteor. Soc. Japan 44, 237–245.

    Google Scholar 

  • Salvekar, P. S. (1984),On the development of monsoon disturbances, through baroclinic Instability and other physical processes. Ph.D. Thesis, University of Poona, Poona.

    Google Scholar 

  • Simmons, A. J. (1974),The meridional scale of baroclinic waves. J. Atmos. Sci.31, 1515–1525.

    Google Scholar 

  • Subrahmanyam, D., Tandon, M. K., George, L. andMishra, S. K. (1981),Role of barotropic mechanism in the developments of a monsoon depression: A MONEX study. Pure Appl. Geophys.119, 901–912.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvekar, P.S., Mishra, S.K. Baroclinic energetics and zonal plane distribution of monsoon disturbances. PAGEOPH 123, 448–462 (1985). https://doi.org/10.1007/BF00880743

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00880743

Key words

Navigation