Mini-Review

Journal of Bioenergetics and Biomembranes

, Volume 23, Issue 4, pp 537-560

First online:

Calcium-activated potassium channels: Regulation by calcium

  • Owen B. McManusAffiliated withDepartment of Membrane Biochemistry and Biophysics, Merck Institute for Therapeutic Research

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A wide variety of calcium-activated K channels has been described and can be conveniently separated into three classes based on differences in single-channel conductance, voltage dependence of channel opening, and sensitivity to blockers. Large-conductance calcium-activated K channels typically require micromolar concentrations of calcium to open, and their sensitivity to calcium increases with membrane depolarization, suggesting that they may be involved in repolarization events. Small-conductance calcium-activated K channels are generally more sensitive to calcium at negative membrane potentials, but their sensitivity to calcium is independent of membrane potential, suggesting that they may be involved in regulating membrane properties near the resting potential. Intermediate-conductance calcium-activated K channels are a loosely defined group, where membership is determined because a channel does not fit in either of the other two groups. Within each broad group, variations in calcium sensitivity and single-channel conductance have been observed, suggesting that there may be families of closely related calcium-activated K channels. Kinetic studies of the gating of calcium-activated potassium channels have revealed some basic features of the mechanisms involved in activation of these channels by calcium, including the number of calcium ions participating in channel opening, the number of major conformations of the channels involved in the gating process, and the number of transition pathways between open and closed states. Methods of analysis have been developed that may allow identification of models that give accurate descriptions of the gating of these channels. Although such kinetic models are likely to be oversimplifications of the behavior of a large macromolecule, these models may provide some insight into the mechanisms that control the gating of the channel, and are subject to falsification by new data.

Key Words

Calcium-activated potassium channel potassium channel ion channel, channel gating