Fertilizer research

, Volume 40, Issue 3, pp 207-214

First online:

Effect of soil pH on the requirement for water-soluble phosphorus in triple superphosphate fertilizers

  • G. L. MullinsAffiliated withDepartment of Agronomy and Soils, and Alabama Agricultural Experiment Station, Auburn University
  • , F. J. SikoraAffiliated withTennessee Valley Authority

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A greenhouse study was conducted to determine if soil pH affects the requirement for water-soluble P and the tolerance of water-insoluble impurities in TSP fertilizers. Two commercial TSP fertilizers were selected to represent a range in phosphate rock sources and impurities. Phosphate fertilizer impurities were isolated as the water-washed fraction by washing whole fertilizers with deionized water. TSP fertilizers with various quantities of water-soluble P (1.2 to 99% water-soluble P) were simulated by mixing the water-washed fertilizer fractions or dicalcium phosphate (DCP) with reagent-grade monocalcium phosphate (MCP). The fertilizers were applied to supply 40 mg AOAC available P kg−1 to a Mountview silt loam (fine-silty, siliceous, thermic Typic Paleudults). Wheat (Triticum aestivum (L.)) was harvested at 49 and 84 days after planting. Soil pH values at the final forage harvest were 5.4±0.16 and 6.4±0.15. At a soil pH of 5.4, the TSP fertilizers required only 37% water-soluble P to reach maximum yields while at pH 6.4 the fertilizers required 63% water-soluble P. Results of this study show that higher levels of water -insoluble P can be tolerated in TSP fertilizers when applied to acid soils. Phosphorus uptake was not affected by soil pH, but for the mixtures containing the fertilizer residues the source having the lowest level of Fe and Al had a higher relative agronomic effectiveness.

Key words

available P citrate insoluble P phosphorus sources triple superphosphate Triticum aestivum water soluble P wheat