, Volume 15, Issue 2, pp 167-173

The application of special relativity to the right-angled lever

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The Lorentz transformation relates the Einstein-defined measures, associated with two inertial frames, of the space and time coordinates of a body or event. From such information relative velocities and accelerations may be deduced, and their appropriate transformations derived. All other transformations of special relativity are derived from the Lorentz transformation and hence depend on the coordinate measures related by the transformation. In particular, the transformation of forces depends on that for accelerations; hence it may not be appropriately applicable to equilibrium phenomena involving null-acceleration. It is suggested that this is the root of the apparent paradox which arises when the conventional force transformation is applied to the consideration of a right-angled lever in equilibrium in its proper inertial frame. It is shown that this paradox is resolved by the employment of a nonconventional but appropriate special relativistic transformation for forces not associated with corresponding accelerations.