, Volume 13, Issue 3, pp 377-384

Gangliosides protect human melanoma cells from ionizing radiation-induced clonogenic cell death

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


With an experimental model of spontaneous lung metastases of melanoma developed in this laboratory, a range of sublines (variants and clones) with different metastatic potential and ganglioside expression was established from a single human melanoma cell line M4Be. Using anin vitro clonogenic assay and provided that cells were cultured for no more than five passages, variations in cellular radioresistance of M4Be and seven sublines derived from M4Be were detected. This study shows a positive correlation between the cell intrinsic radioresistance of M4Be and its seven sublines and their total ganglioside content. More precisely, the proportion of radioresistant cells in M4Be and the seven sublines correlated with the number of cells determined by flow cytometry that were positively labelled with a monoclonal antibody directed to GD3 disialoganglioside. Blocking the cellular biosynthesis of gangliosides with the inhibitor Fumonisin B1 or cleaving withVibrio cholerae neuraminidase the cell surface ganglioside-bound sialic acid in a radioresistant poorly metastatic subline increased its radiosensitivityin vitro. In contrast, enrichment of a radiosensitive metastatic subline with exogenous bovine brain GM1 increased its radioresistancein vitro. These results suggest that, in the radiation dose range important for radioprotection (0–1 Gy), membrane gangliosides radioprotect human melanoma cellsin vitro.