, Volume 75, Issue 1-2, pp 141-173

A numerical simulation of boundary-layer flows near shelterbelts

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We have developed a shelterbelt boundary-layer numerical model to study the patterns and dynamic processes relating to flow interaction with shelterbelts. The model simulates characteristics of all three zones of airflow passing over and through shelterbelts: the windward windspeed-reduction zone, the overspeeding zone above the shelterbelt, and the leeward windspeed-reduction zone. Locations of the maximum windspeed reduction and recirculation zone, as well as the leeward windspeed-recovery rate are well simulated by the model. Where comparisons with field measurements and wind-tunnel experiments were possible, the model demonstrated good performance for flows over and through shelters ranging from almost completely open to almost solid.

The dynamic pressure resulting from the convergence and divergence of the flow field alters the perturbation pressure field. The disturbed pressure controls not only the formation of the separated flow but also the location of maximum windspeed reduction, streamline curvature, speed-up over the shelterbelt, and leeward windspeed recovery rate. The interaction of pressure with the flow produces complex flow patterns, the characteristics of which are determined, to a great extent, by shelterbelt structure.