1.

M. Ajtai, L. Babai, P. Hajnal, J. Komlos, P. Pudlak, V. Rödl, E. Szemeredi, and G. Turan, “Two lower bounds for branching programs,”*Proc. 18th ACM STOC*, 1986, pp. 30–38.

2.

B. Becker, “Synthesis for testability: Binary decision diagrams,”*Proc. of 9th Annual Symposium on Theoretical Aspects of Computer Science*, Lecture Notes in Computer Science, February 1992, Vol 577, pp. 501–512.

3.

B. Becker and R. Drechsler,*On the Computational Power of Functional Decision Diagrams*, Interner Bericht 5/93, Universität Frankfurt, 1993.

4.

M.Blum, A.K.Chandra, and M.N.Wegman, “Equivalence of free boolean graphs can be decided probabilistically in polynomial time,”

*IPL 10*, Vol. 2, pp. 80–82, 1980.

MathSciNetGoogle Scholar5.

S.D. Brown, R.J. Francis, J. Rose, and Z.G. Vranesic,*Field-Programmable Gate Arrays*, Kluwer Academic Publisher, 1992.

6.

R.E.Bryant, “Graph-based algorithms for boolean function manipulation,”

*IEEE Trans. Comput. C-35*, Vol. 6, pp. 677–691, August 1986.

Google Scholar7.

R.E.Bryan, “On the complexity of VLSI implementations and graph representations of boolean functions with applications to integer multiplication”,

*IEEE Trans. Comput. 40*, Vol. 2, pp. 205–213, February 1991.

CrossRefGoogle Scholar8.

R.E.Bryant, “Symbolic boolean manipulation with ordered binary decision diagrams,”

*ACM Computing Surveys*, Vol. 24, No. 3, pp. 293–318, September 1992.

CrossRefGoogle Scholar9.

J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill, “Sequential circuit verification using symbolic model checking,”*Proc. of 27th ACM/IEEE Design Automation Conference*, Orlando, June 1990, pp. 46–51.

10.

O. Coudert, J.-C. Madre, and C. Berthet, “Verifying temporal properties of sequential machines without building their state diagrams”,*Proc. of Computer-Aided Verification*, Rutgers, N.J., June 1990, pp. 75–84.

11.

R. Drechsler and B. Becker,*Rapid Prototyping of Fully Testable Multi-Level AND/EXOR Networks*, Interner Bericht 4/93, Universität Frankfurt, 1993.

12.

H.Eveking,

*Verifikation digitaler Systeme*, Teubner, Stuttgart, 1991.

Google Scholar13.

J. Gergov and Ch. Meinel, “Frontiers of feasible and probabilistic feasible boolean manipulation with branching programs,”*Proc. of 10th Annual Symposium on Theoretical Aspects of Computer Science*, (February), Lecture Notes in Computer Science, Vol. 665, 1993, pp. 576–585.

14.

J. Gergov and Ch. Meinel, “Efficient analysis and manipulation of OBDDs can be extended to FBDDs”,*IEEE Transactions on Computers*, Vol. 43, No. 10, 1994.

15.

J.Jain, J.Bitner, D.S.Fussell, and J.Abraham, “Probabilistic verification of Boolean functions,”

*Formal Methods in System Design*, Vol. 1, pp. 63–117, 1992.

CrossRefGoogle Scholar16.

U. Kebschull, E. Shubert, and W. Rosenstiel, “Multilevel logic synthesis based on functional decision diagrams”,*Proc. EDAC'92*, 1992, pp. 43–47.

17.

R. Lidl and H. Niederreiter,*Introduction to Finite Fields and Their Applications*, Cambridge University Press, 1986.

18.

S. Malik, A. Wang, and R.K. Brayton, “A. Sangiovanni-Vincentelli: Logic verification using binary decision diagrams in a logic synthesis environment”,*Proc. IEEE International Conference on Computer-Aided Design*, Santa Clara, Calif., November 1988, pp. 6–9.

19.

Ch. Meinel,*Modified Branching Programs and Their Computational Power*, Springer Verlag, LNCS 370, 1989.

20.

H. Minato, N. Ishiura, and S. Yajima, “Shared binary decision diagrams with attributed edges for efficient boolean function manipulation”,*Proc. 27th ACM/IEEE Design Automation Conference*, Orlando, June 1990, pp. 52–57.

21.

D.E.Muller, “Application of Boolean algebra to switching circuit design and to error correction,”

*IRE Trans. Electr. Comp.*, Vol. 3, No. 3, pp. 6–12, September 1954.

Google Scholar22.

M.A. Perkowski, L. Csansky, A. Sarabi, and I. Schäfer, “Fast minimization of mixed polarity AND/XOR canonical networks”,*Proceedings of ICCD'92*, 1992, pp. 33–36.

23.

A.A. Razborov, “A lower bound on the size of bounded depth networks over a complete basis with logical addition”,*Mat. Zametki*, Vol. 41, No. 4, pp. 598–607, 1987 (in Russian); English translation in:*Math. Notes*, Vol. 41, No. 4, pp. 333–338, 1987.

24.

S.M.Reddy, “Easily testable realizations for logical functions,”

*IEEE Trans. Comput.*, Vol. C21, pp. 1183–1188, November 1972.

MATHGoogle Scholar25.

I.S.Reed, “A class of multiple-error-correcting codes and their decoding scheme,”

*IRE Trans. Inf. Theory*, Vol. PGIT-4, pp. 38–49, 1954.

CrossRefGoogle Scholar26.

T.Sasao and Ph.W.Besslich, “On the Complexity of Mod-2 Sum PLAs,”

*IEEE Trans. Comput.*, Vol. 39, No. 2, pp. 269–266, February 1990.

CrossRefGoogle Scholar27.

T. Sasao, ”Optimization of multi-valued AND-EXOR expressions using multiple-place decision diagrams”,*Proceedings of the 22nd Int. Symp. of Multi-Valued Logic*, 1992, pp. 451–458.

28.

J.M. Saul, “Logic synthesis for arithmetic circuits using Reed-Muller representation”,*Proc. EDAC'92*, March 1992.