Physiological responses to maximal intensity intermittent exercise

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Physiological responses to repeated bouts of short duration maximal-intensity exercise were evaluated. Seven male subjects performed three exercise protocols, on separate days, with either 15 (S15), 30 (S30) or 40 (S40) m sprints repeated every 30 s. Plasma hypoxanthine (HX) and uric acid (UA), and blood lactate concentrations were evaluated pre- and postexercise. Oxygen uptake was measured immediately after the last sprint in each protocol. Sprint times were recorded to analyse changes in performance over the trials. Mean plasma concentrations of HX and UA increased during S30 and S40 (P<0.05), HX increasing from 2.9 (SEM 1.0) and 4.1 (SEM 0.9), to 25.4 (SEM 7.8) and 42.7 (SEM 7.5) µmol · l−1, and UA from 372.8 (SEM 19) and 382.8 (SEM 26), to 458.7 (SEM 40) and 534.6 (SEM 37) µmol · l−1, respectively. Postexercise blood lactate concentrations were higher than pretest values in all three protocols (P<0.05), increasing to 6.8 (SEM 1.5), 13.9 (SEM 1.7) and 16.8 (SEM 1.1) mmol · l−1 in S15, S30 and S40, respectively. There was no significant difference between oxygen uptake immediately after S30 [3.2 (SEM 0.1) l · min−1] and S40 [3.3 (SEM 0.4) l · min−1], but a lower value [2.6 (SEM 0.1) l · min−1] was found after S15 (P<0.05). The time of the last sprint [2.63 (SEM 0.04) s] in S15 was not significantly different from that of the first [2.62 (SEM 0.02) s]. However, in S30 and S40 sprint times increased from 4.46 (SEM 0.04) and 5.61 (SEM 0.07) s (first) to 4.66 (SEM 0.05) and 6.19 (SEM 0.09) s (last), respectively (P<0.05). These data showed that with a fixed 30-s intervening rest period, physiological and performance responses to repeated sprints were markedly influenced by sprint distance. While 15-m-sprints could be repeated every 30 s without decreases in performance, 40-m sprint times increased after the third sprint (P<0.05) and this exercise pattern was associated with a net loss to the adenine nucleotide pool.