, Volume 3, Issue 6, pp 452-456

The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layerin vitro

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A bioactive glass containing (in wt%) SiO2 48, P2O5 9.5, Na2O 20 and CaO 22.5 was transformed into a glass-ceramic through a heat treatment. The apatite formation on the surface of this glass-ceramic was examined in a simulated physiological solution. The data from X-ray diffraction, infrared reflection spectroscopy, scanning electron microscopy together with energy-dispersive X-ray analysis and composition imaging of backscattered electrons showed that the formation of the surface apatite layer depends on the relative amount of residual glassy phase in the glass-ceramic. The apatite layer was found to formin vitro on its surface if the glass-ceramic contained a residual glassy phase in a relative proportion more than a limiting volume. It lay on a layer rich in silica. However, only, a silica-rich layer was developed within the surface region of the glass-ceramic during the interaction with solution if the glass was almost completely crystallized. It is proposed that the apatite formation on the surface of the glass-ceramic is mainly caused by its residual glass. The residual glass facilitating apatite formation is considered to provide a negatively charged surface developed during its corrosion in the surrounding solution. The negatively charged surface attracts calcium ions and creates a solution within the glass — solution interface that is highly supersaturated with respect to hydroxyapatite. This leads to the formation of apatite on the surface of the glass-ceramic.