, Volume 77, Issue 2, pp 141-162

A virtuoso isopod

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


An extremely elaborate performance, involving endogenous timing with both tidal and lunar frequencies, has been recorded in the locomotor activity of an adult specimen of the intertidal isopod,Excirolana chiltoni. During two months of observation, under constant, non-tidal conditions, this animal showed a persistent tidal rhythm in its swimming activity. Bursts of activity were initially well synchronized with times of tide crest on the shore. The average free-running period of the tidal rhythm was about 24 h 55 min, i.e. about 5 minutes longer than the average period of the tides; thus, the loss of synchrony with the concurrent tides was very gradual. The amount of activity per burst showed a conspicuous pattern of variation, a periodic amplitude modulation which paralleled, in detail, the complex lunar cycle of changes in height of high tide. The free-running period of the bimodal, circa-lunar rhythm of amplitude modulation was one or two days longer than the natural 29-day lunar cycle of tide heights.

Each feature of this recording has been qualitatively replicated in activity records from other individuals of this species. Freshly-collectedExcirolana generally show spontaneous bursts of activity at times of tide crest, bursts which are repeated as a persistent tidal rhythm, the period of which commonly departs by only a few minutes from that of the natural tidal cycle. Superimposed on the tidal rhythm is an endogenous monthly pattern of amplitude modulation, which alters the amount of activity per burst. This circa-lunar rhythm has a free-running period between about 26 and 33 days, and generally leads to maximum activity on days of highest of high tides. The net result of the tidal and lunar rhythms is an activity pattern which permits the isopods to recapitulate, in great detail, certain significant ecological aspects of the mixed, semi-diurnal tidal regime of California.

The experimental data are not compatible with the hypothesis that uncontrolled environmental factors, such as vibrations from waves, were responsible for the rhythmic behavior of the animals. Neither do the data support the hypothesis that “beats” between the observed tidal rhythm and a hidden daily or circadian rhythm were responsible for the observed circa-lunar rhythm. Furthermore, the pattern of the circa-lunar rhythm cannot be accounted for by a single monthly oscillation in the “excitability” of the animals, such as might be mediated by changes in the level of an excitatory or inhibitory hormone in the circulatory system.