, Volume 54, Issue 7, pp 573-589

Morphology and emplacement of an unusual debris-avalanche deposit at Jocotitlán volcano, Central Mexico

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A pre-historic collapse of the northeastern flank of Jocotitlán Volcano (3950 m), located in the central part of the Trans Mexican Volcanic Belt, produced a debris-avalanche deposit characterized by surficial hummocks of exceptional size and conical shape. The avalanche covered an area of 80 km2, had an apparent coefficient of friction (H/L)_of 0.11, a maximum runout distance of 12 km, and an estimated volume of 2.8 km3. The most remarkable features of the Jocotitlán debris avalanche deposit are: the several steep (29–32°) conical proximal hummocks (up to 165 m high), large tansverse ridges (up to 205 m high and 2.7 km long) situated at the base of the volcano, and the steep 15–50 m thick terminal scarp. Proximal conical hummocks and parallel ridges that can be visually fitted back to their pre-collapse position on the mountain resulted from a sliding mode of emplacement. Steep primary slopes developed as a result of the accumulation of coarse angular clasts at the angle of repose around core clasts that are decameters in size. Distal hummocks are commonly smaller, less conical, and clustered with more diffuse outlines. Field evidence indicates that the leading distal edge of the avalanche spilled around certain topographic barriers and that the distal moving mass had a yield strength prior to stopping. In the NE sector, the avalanche was suddenly confined by topographically higher lacustrine and volcaniclastic deposits which as a result were intensely thrust-faulted, folded, and impacted by large clasts that separated from the avalanche front. Post-emplacement loading also induced normal faulting of these soft, locally water-rich sediments. The regional tectonic pattern, N-NE direction of flank failure, and the presence of a major normal fault which intersects the volcano and is parallel to the orientation of the Acambay graben located 10 km to the N suggest a genetic relationship between the extensional tectonic stress regime and triggering of catastrophic slope failure. The presence of a 3-m-thick sequence of pumice and obsidian-rich pyroclastic surge and fall tephra directly overlying the debris-avalanche deposit indicates that magma must have been present within the edifice just prior to the catastrophic flank failure. The breached crater left by the avalanche has mostly been filled by dacitic domes and lava flows. The youngest pryroclastic surge deposits on the upper flanks of the volcano have an historical C14 age of 680±80 yearsBp (Ad 1270±80). Thus Jocotitlán volcano, formerly believed to be extinct, should be considered potentially active. Because of its close proximity to Mexico-City (60 km), the most populous city in the world, reactivation could engender severe hazards.