Journal of Materials Science

, Volume 15, Issue 10, pp 2523-2538

First online:

Compression strength of carbon, glass and Kevlar-49 fibre reinforced polyester resins

  • M. R. PiggottAffiliated withCentre for the Study of Materials, University of Toronto
  • , B. HarrisAffiliated withSchool of Materials Science, University of Bath

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The compression behaviour of a series of polyester resins of various compositions and in different states of cure has been investigated. Their mechanical characteristics having been established, the same range of resins was then used as a matrix material for a series of composites reinforced with carbon, glass and aromatic polyamide fibres. The composites were unidirectionally reinforced, having been manufactured by pultrusion, and were compression tested in the fibre direction after a series of experiments to assess the validity of a simple testing procedure. “Rule of Mixtures” behaviour occurred in glass-polyester composites up to limiting volume fractions (V f) of 0.31 for strength and 0.46 for elastic modulus, the compression modulus being equal to the tensile modulus, and the apparent fibre strength being in the range 1.3 to 1.6 GPa at this limiting V f. At a V f of 0.31 the strengths of reinforced polyesters were proportional to the matrix yield strength, σ my, and their moduli were an inverse exponential function of σ my. For the same matrix yield strength a composite with an epoxy resin matrix was stronger than polyester based composites. At V f=0.30, Kevlar fibre composites behaved as though their compression modulus and strength were much smaller than their tensile modulus and strength, while carbon fibre composites were only slightly less stiff and weaker in compression than in tension. The compression strengths of the polyester resins were found to be proportional to their elastic moduli.