, Volume 16, Issue 11, pp 3183-3193

Annealing behaviour of amorphous Fe80B20 on continuous heating

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Resistance measurements during direct heating of Fe80B20 amorphous alloys indicate phase changes occur at 395, 500, 720 and 840° C. Samples heated to these temperatures, and maintained for five minutes in a neutral atmosphere, show that a hardness maximum occurs at the crystallization temperature of 395° C and that annealing at 500° C produces a material with the same hardness. Above 500° C the microhardness is seen to drop below that of the amorphous alloy. Saturation magnetization measurements show a steady increase following each anneal, up to a temperature of 720° C, and the rate of increase is seen to drop in the range of 720 to 840° C. X-ray diffraction studies show that only a small fraction of the matrix is crystallized following the anneal at 395° C and the transformed phases are α-Fe and Fe3B. Following annealing at 500° C, an increased proportion of α-Fe and Fe3B are observed with complete crystallinity while samples heattreated at 720° C are seen to consist of a three-phase mixture of α-Fe, Fe23B6 and Fe2B. Annealing at 840° C is seen to produce an equilibrium phase mixture of α-Fe and Fe2B phases. Only in the sample annealed at 395° C is a fraction of the amorphous phase seen to persist, indicating that a 5 min anneal is not sufficient, at this temperature, to induce complete crystallization. These structural features are corroborated by field ion microscope analyses, made at liquid nitrogen temperature in a medium of pure neon, and scanning electron microscopy, and are also consistent with our earlier study involving the isothermal annealing, for various times, of Fe80B20 alloy at 780° C.