Archives of Microbiology

, Volume 111, Issue 1, pp 137–144

Growth of Hansenula polymorpha in a methanol-limited chemostat

Physiological responses due to the involvement of methanol oxidase as a key enzyme in methanol metabolism
  • L. P. Van Dijken
  • R. Otto
  • W. Harder
Article

DOI: 10.1007/BF00446560

Cite this article as:
Van Dijken, L.P., Otto, R. & Harder, W. Arch. Microbiol. (1976) 111: 137. doi:10.1007/BF00446560

Abstract

Hansenula polymorpha has been grown in a methanol-limited continuous culture at a variety of dilution rates. Cell suspensions of the yeast grown at a dilution rate of 0.16 h-1 showed a maximal capacity to oxidize excess methanol (QO2max) which was 1.6 times higher than the rate required to sustain the growth rate (QO2). When the dilution rate was decreased to 0.03 h-1, QO2max of the cells increased to a value of more than 20 times that of QO2. The enzymatic basis for this tremendous overcapacity for the oxidation of excess methanol at low growth rates was found to be the methanol oxidase content of the cells. The level of this enzyme increased from 7% to approximately 20% of the soluble protein when the growth rate was decreased from 0.16 to 0.03 h-1. These results were explained on the basis of the poor affinity of methanol oxidase for its substrates. Methanol oxidase purified from Hansenula polymorpha showed an apparent Kmfor methanol of 1.3 mM in air saturated reaction mixtures and the apparent Kmof the enzyme for oxygen was 0.4 mM at a methanol concentration of 100 mM.

The involvement of an oxygen dependent methanol oxidase in the dissimilation of methanol in Hansenula polymorpha was also reflected in the growth yield of the organism. The maximal yield of the yeast was found to be low (0.38 g cells/g methanol). This was not due to a very high maintenance energy requirement which was estimated to be 17 mg methanol/g cells x h.

Key words

YeastsMethanolChemostatPeroxisomesMethanol oxidaseEnzyme kineticsYieldsHansenula polymorpha

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • L. P. Van Dijken
    • 1
  • R. Otto
    • 1
  • W. Harder
    • 1
  1. 1.Department of MicrobiologyUniversity of GroningenHaren (Gr.)The Netherlands