, Volume 82, Issue 4, pp 310-317

The analysis and disposition of imipramine and its active metabolites in man

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Single oral and intramuscular (i.m.) doses of imipramine (IMI) were administered to four normal males. Serum and urine concentrations of IMI, desipramine (DMI) and their unconjugated 2-hydroxy metabolites were measured by high-pressure liquid chromatography (HPLC). Urinary conjugated 2-hydroxy metabolites were also measured after enzyme hydrolysis. Computer analysis of serum concentration and urinary excretion rate data allowed confirmation of drug and metabolite kinetics, and calculation of pharmacokinetic parameters. The rapid appearance of the metabolites in serum indicates that sequential firstpass metabolism of IMI involves both hydroxylation and demethylation. However, the dose-normalized areas under the serum concentration-time curves indicate that the fractions of the doses converted to metabolites were similar after both routes of IMI administration. Similar total fractions of the i.m. and oral doses recovered in urine indicate complete absorption of the oral doses. Inclusion of the metabolites increased the apparent availability of active components after oral IMI from 22%–50% to 45%–94%. Both the 2-hydroxy metabolites exhibited formation rate-limited kinetics, whereas DMI kinetics were elimination rate-limited. The t 1/2 of IMI and 2-hydroxyimipramine (2-OH-IMI) was 6–18 h, while that of DMI and 2-hydroxydesipramine (2-OH-DMI) was 12–36 h. The t 1/2 of these compounds was 1.5–2 times longer after the i.m. doses. The metabolite/parent ratios and the disposition of the individual metabolites confirm findings that chronic dosing results in only limited accumulation of hydroxy metabolites.