Skip to main content
Log in

Physical exercise after induced alkalosis (bicarbonate or Tris-buffer)

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

The influence of bicarbonate and Tris-buffer infusions on the performance capacity for maximal, brief exercise (400 m run) was studied using 10 normal males in their twenties. Run time, maximal lactate concentration and heart rate remained unchanged after the buffer infusions. As a result of the induced elevated buffering capacity, the average pH after exercise was about 0.1 unit higher. Corresponding values for base excess and standard bicarbonate were found. The arterial pCO2 was higher after infusion as a result of the active respiratory compensation. Since the reduction in the work-related metabolic acidosis by the buffering substances caused no improvement in performance, the importance of pH as the performance-limiting factor must be questioned because the investigation gave no evidence for alterations of intracellular pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asmussen, E., Klausen, K., Nielsen, L. E., Techow, O. S., Tonder, J. P.: Lactate production and anaerobic work capacity after prolonged exercise. Acta physiol. scand. 90, 731 (1974)

    Google Scholar 

  2. Åstrand, P.-O., Rodahl, K.: Textbook of work physiology, p. 669. New York: McGraw-Hill 1970

    Google Scholar 

  3. Beierholm, E. A., Grantham, R. N., O'Keefe, D. D., Laver, M. B., Daggett, W. M.: Effects of acid-base changes, hypoxia, and catecholamines on ventricular performances. Amer. J. Physiol. 228, 1555 (1975)

    Google Scholar 

  4. Bleich, H. L., Schwartz, W. B.: Tris buffer (THAM). New Engl. J. Med. 274, 782 (1966)

    Google Scholar 

  5. Bodemann, H. et al.: Unpublished results

  6. Caress, D. L., Kissack, A. S., Slovin, A. J., Stuckey, J. H.: The effect of respiratory and metabolic acidosis on myocardial contractility. J. thorac. cardiovasc. Surg. 56, 571 (1968)

    Google Scholar 

  7. Cerretelli, P.: Lactacid oxygen debt in acute and chronic hypoxia. In: Exercise at altitude (R. Margaria, ed.), pp. 58–64. Amsterdam: Excerpta Medica 1967

    Google Scholar 

  8. Davies, D. G., Fitzgerald, R. S., Gurtner, G. H.: Acid-base relationships between CSF and blood during acute metabolic acidosis. J. appl. Physiol. 34, 243 (1973)

    Google Scholar 

  9. Del Castillo, J., Nelson, T. E., Jr., Sanchez, V.: Mechanism of the increased acetylcholine sensitivity of skeletal muscle in low pH solutions. J. cell. comp. Physiol. 59, 35 (1962)

    Google Scholar 

  10. Dennig, H., Becker-Freyseng, H., Rendenback, H., Schostak, G.: Leistungssteigerung in künstlicher Alkalose bei wiederholter Arbeit. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 195, 261 (1940)

    Google Scholar 

  11. Dennig, H., Talbot, J. T., Edwards, H. T., Dill, D. B.: Effect of acidosis and alkalosis upon capacity for work. J. clin. Invest. 9, 609 (1931)

    Google Scholar 

  12. Dorow, H., Galuba, B., Hellwig, H., Becker-Freyseng, H.: Der Einfluß künstlicher Alkalose auf die sportliche Leistung von Läufern und Schwimmern. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 195, 264 (1940)

    Google Scholar 

  13. Downing, S. E., Talner, N. S., Gardner, T. H.: Cardiovascular responses to metabolic acidosis. Amer. J. Physiol. 208, 237 (1965)

    Google Scholar 

  14. Fuchs, F., Reddy, Y., Briggs, F. N.: The interaction of cations with the calcium-binding site of troponin. Biochim. biophys. Acta (Amst.) 221, 407 (1970)

    Google Scholar 

  15. Gonzalez, N. C., Clancy, R. L.: Inotropic and intracellular acid-base changes during metabolic acidosis. Amer. J. Physiol. 228, 1060 (1975)

    Google Scholar 

  16. Havel, V., Škranc, O.: Changes in the acid-base balance of the blood after repeated maximum exercise load. Physiol. bohemoslov. 20, 19 (1971)

    Google Scholar 

  17. Hems, R., Ross, B. D., Berry, M. N., Krebs, H. A.: Gluconeogenesis in the perfused rat liver. Biochem. J. 101, 284 (1966)

    Google Scholar 

  18. Hermansen, L.: Anaerobic energy release. Med. Sci. Sports 1, 32 (1969)

    Google Scholar 

  19. Hermansen, L., Osnes, J. B.: Blood and muscle pH after maximal exercise in man. J. appl. Physiol. 32, 304 (1972)

    Google Scholar 

  20. Hill, A. V.: The influence of the external medium on the internal pH of muscle. Proc. roy. Soc. B 144, 1 (1955)

    Google Scholar 

  21. Hill, D. K.: Anaerobic recovery heat. J. Physiol. (Lond.) 98, 460 (1940)

    Google Scholar 

  22. Hirche, Hj., Hombach, V., Langohr, H. D., Wacker, U., Busse, J.: Lactic acid permeation rate in working gastrocnemii of dogs during metabolic alkalosis and acidosis. Pflügers Arch. ges. Physiol. 356, 209 (1975)

    Google Scholar 

  23. Hofer, H.-W., Pette, D.: Wirkungen und Wechselwirkungen von Substraten und Effektoren an der Phosphofructokinase des Kaninchen-Skeletmuskels. Z. physiol. Chem. 349, 1378 (1968)

    Google Scholar 

  24. Hohorst, H. J.: L-(+)-Lactat, Bestimmung mit Lactatdehydrogenase und DPN. In: Methoden der enzymatischen Analyse. (H. U. Bergmeyer, Hrsg.). Weinheim: Verlag Chemie 1962

    Google Scholar 

  25. Kindermann, W., Huber, G., Keul, J.: Anoxidative Energiebereitstellung beim Laufen und Schwimmen während ein- bis dreiminütiger Belastungsdauer. Sportarzt u. Sportmed. 24, 273 (1973)

    Google Scholar 

  26. Kindermann, W., Keul, J., Reindell, H.: Grundlagen zur Bewertung leistungsphysiologischer Anpassungsvorgänge. Dtsch. med. Wschr. 99, 1372 (1974)

    Google Scholar 

  27. Margaria, R., Aghemo, P., Sassi, G.: Effect of alkalosis on performance and lactate formation in supramaximal exercise. Int. Z. angew. Physiol. 29, 215 (1971)

    Google Scholar 

  28. Marsiglia, J. C., Cingolani, H. E., Gonzalez, N. C.: Relevance of beta receptor blockade to the negative inotropic effect induced by metabolic acidosis. Cardiovasc. Res. 7, 336 (1973)

    Google Scholar 

  29. Opie, L. H.: Effect of extracellular pH on function and metabolism of isolated perfused rat heart. Amer. J. Physiol. 209, 1075 (1965)

    Google Scholar 

  30. Pannier, J., Weyne, J., Leusen, I.: Effects of pCO2, bicarbonate and lactate on the isometric contraction of isolated soleus muscle of the rat. Pflügers Arch. ges. Physiol. 320, 120 (1970)

    Google Scholar 

  31. Poulus, A. J., Docter, H. J., Westra, H. G.: Acid-base balance and subjective feelings of fatigue during physical exercise. Europ. J. appl. Physiol. 33, 207 (1974)

    Google Scholar 

  32. Racamora, J. M., Downing, S. E.: Preservation of ventricular function by adrenergic influences during metabolic acidosis in the cat. Circulat. Res. 24, 373 (1969)

    Google Scholar 

  33. Rumler, W., Brümmer, H.: Über die Steigerung der körperlichen Leistungsfähigkeit durch THAM-Salze. Acta biol. med. germ. 17, 432 (1966)

    Google Scholar 

  34. Saltin, B., Hermansen, L.: Glycogen stores and prolonged severe exercise. In: Physical activity and nutrition. Uppsala: Almquist & Wiksell 1967

    Google Scholar 

  35. Severinghaus, J. W., Bradley, A. F.: Electrodes for blood pO2 and pCO2 determination. J. appl. Physiol. 13, 515 (1958)

    Google Scholar 

  36. Siggaard-Andersen, O.: Acute experimental acid-base disturbances in dogs. Scand. J. clin. Lab. Invest. 14, 1 (1962)

    Google Scholar 

  37. Siggaard-Andersen, O.: Blood acid-base alignment nomogram. Scand. J. clin. Lab. Invest. 15, 211 (1963)

    Google Scholar 

  38. Simmons, D. H., Avedon, M.: Acid-base alteration and plasma potassium concentration. Amer. J. Physiol. 197, 319 (1959)

    Google Scholar 

  39. Staib, A. H., Feller, K., Andreas, K.: Beobachtungen über pharmakologische Beeinflussungsmöglichkeiten des Blut-pH. Med. u. Sport 4, 181 (1964)

    Google Scholar 

  40. Trivedi, B., Danforth, W. H.: Effect of pH on the kinetics of frog muscle phosphofructokinase. J. biol. Chem. 241, 4110 (1966)

    Google Scholar 

  41. Ui, M.: A role of phosphofructokinase in pH-dependent regulation of glycolysis. Biochim. biophys. Acta (Amst.) 124, 310 (1966)

    Google Scholar 

  42. Wildenthal, K. D., Mierzwiak, S., Myers, R. W., Mitchell, J. H.: Effects of acute lactic acidosis on left ventricular performances. Amer. J. Physiol. 214, 1352 (1958)

    Google Scholar 

  43. Zimmermann, W. E.: Veränderungen des Säure-Basen-Haushaltes und deren Auswirkung auf die Organdurchblutung von Leber und Niere beim hämorrhagischen und traumatischen Schock. In: Anaesthesiologie und Wiederbelebung, Bd. 12, Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kindermann, W., Keul, J. & Huber, G. Physical exercise after induced alkalosis (bicarbonate or Tris-buffer). Europ. J. Appl. Physiol. 37, 197–204 (1977). https://doi.org/10.1007/BF00421775

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00421775

Key words

Navigation