, Volume 7, Issue 1-2, pp 109-116

Encapsulation of the ferritin protein in sol-gel derived silica glasses

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A significant recent development in sol-gel science has been the encapsulation of biomolecules such as proteins and enzymes in optically transparent silica glasses. This paper reports on the encapsulation of an iron (Fe) storage protein, ferritin, to develop a magnetic silica glass. Native ferritin, which has a nanometer-sized microcrystalline Fe oxide core, was encapsulated in optically transparent silica glasses using the sol-gel process. Fe could be released from ferritin but could not be reconstituted into apoferritin when the protein was trapped in the pores of the glass. Transmission electron microscopy of ferritin-doped aged silica gels indicated that crystallinity of the Fe oxide core was retained upon sol-gel encapsulation. Magnetic measurements on ferritin-doped silica gels indicated the material to be paramagnetic, but not superparamagnetic.