, Volume 67, Issue 2, pp 201-208

Benthic response to sedimentation of a spring phytoplankton bloom: Process and budget

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The response of benthos to sedimentation of the spring phytoplankton bloom in the Kiel Bight (Western Baltic Sea) is described in terms of biomass (ATP) and activity (heat production and ETS-activity). Input of the bloom (11.5 g C m-2) over a period from March 25 to April 19, 1980 to the sediment surface was in the form of cells and fresh phytodetritus as indicated by low C/N ratios (≦7) and high energy charge values (0.78). Benthic microbial activity was immediately stimulated by this input as heat production doubled and the activity of ETS tripled over winter values within 12 d in the absence of a significant increase in ambient temperature. A comparison of the two activity parameters suggests that anaerobic metabolism is more important during the winter (February and March) than after input of the bloom. Meiofauna was not able to take part in the first activity outburst. Benthic ATP-biomass (excluding macrofauna) doubled in late April due to microbial production, and doubled again in early May when meiofauna started reproductive activity. For macrofauna a general statement was not possible, although the sediment surface feeder Macoma baltica commenced a build up of glycogen and lipid resources immediately following bloom input whereas Nephtys ciliata, feeding on sediment and small macrofauna, showed a less pronounced and delayed effect from this input. An energy budget based on heat production measurements was calculated. A daily heat loss of the benthic community of 21.7 KJ m-2 d-1 (35.5 KJ m-2 d-1) was found, when a depth of 3 cm sediment (5 cm) was assumed. Heat production of macrofauna contributed less than 5% of this activity. The input of the bloom was “burned” within 21 (13) d. Preliminary estimations for an annual budget suggest that the vertical transport of particulate organic matter via sedimentation can only explain 25% (15%) of the benthic activity in the shallow water ecosystem of the Kiel Bight. This indicates the presence of other sources of organic carbon such as benthic primary production or other transport processes providing carbon to the sediments.

Publication No. 384 of the Joint Research Program of Kiel University (Sonderforschungsbereich 95)
Communicated by O. Kinne, Hamburg