, Volume 99, Issue 4, pp 495-505

Population structure in the coral Pavona cactus: clonal genotypes show little phenotypic plasticity

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Electrophoretic data were used to examine the relationship between genotype and growth form, and to assess the contribution of asexual reproduction to recruitment within six local populations of the agaricid coral Pavona cactus from the central and northern Great Barrier Reef. The data revealed the presence of highly replicated clonal genotypes in the five densest populations. In three cases, samples of 50 to 60 colonies collected from 25 m2 areas within the Eclipse Island and Pandora Reef populations each consisted of colonies with only two distinct 4-locus genotypes. More intensive sampling of the population at Eclipse Island showed that colonies with the same 4-locus genotypes were separated by distances of up to 93 m. In contrast, the population at Watson's Bay (Lizard Island) consisted of a few widely scattered and genetically distinct colonies. The samples collected from each population contained a range of growth forms including, in some cases, the entire morphological range described for this species. A strong association of genotype and growth form was detected in samples from all populations, with the exception of Watson's Bay where no such comparison was possible. Nevertheless, some genotypes were represented by more than one growth form and this could reflect the effects of limited phenotypic plasticity. The effects of asexual reproduction reduced the value of these data as a test of the genetic connectedness of the six populations studied. The genetic distance between samples was not simply correlated with geographic distance. This may reflect either the true structure of the breeding population(s) or the effects of asexual reproduction on estimates of allelic frequencies.

Contribution No. 47 from the Ecology and Genetics Group of the University of Wollongong
Communicated by G. F. Humphrey, Sydney