1.

A. Bressan, Contractive metrics for nonlinear hyperbolic systems, *Indiana Univ. Math. J.*
**37** (1988), 409–421.

2.

A. Bressan, Unique solutions for a class of discontinuous differential equations, *Proc. Amer. Math. Soc.*
**104** (1988), 772–778.

3.

A. Bressan, Global solutions of systems of conservation laws by wave-front tracking, *J. Math. Anal Appl.*
**170** (1992), 414–432.

4.

A. Bressan, A contractive metric for systems of conservation laws with coinciding shock and rarefaction waves, *J. Diff. Eqs.*
**106** (1993), 332–366.

5.

A. Bressan, A locally contractive metric for systems of conservation laws, *Annali Scuola Norm. Sup. Pisa*, to appear.

6.

A. Bressan & R. M. Colombo, The semigroup generated by 2×2 systems of conservation laws, *Arch. Rational Mech. Anal.*, to appear.

7.

C. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, *J. Math. Anal. Appl.*
**38** (1972), 33–41.

8.

C. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws, *Arch. Rational Mech. Anal.*
**107** (1989), 127–155.

9.

R. DiPerna, Singularities of solutions of nonlinear hyperbolic conservation laws, *Arch. Rational Mech. Anal.*
**60** (1975), 75–100.

10.

R. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws, *J. Diff. Eqs.*
**20** (1976), 187–212.

11.

R. DiPerna, Convergence of approximate solutions to conservation laws, *Arch. Rational Mech. Anal.*
**82** (1983), 27–70.

12.

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, *Comm. Pure Appl. Math.*
**18** (1965), 697–715.

13.

J. Glimm & P. Lax, Decay of solutions of systems of hyperbolic conservation laws, *Amer. Math. Soc. Memoir*
**101**, Providence, 1970.

14.

J. Goodman & Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, *Arch. Rational Mech. Anal.*
**121** (1992), 235–265.

15.

S. Kužkov, First order quasilinear equations with several space variables, *Math. USSR Sbornik*
**10** (1970), 217–273.

16.

P. Lax, Hyperbolic systems of conservation laws II, *Comm. Pure Appl Math.*
**10** (1957), 537–566.

17.

T.-P. Liu, The deterministic version of the Glimm scheme, *Comm. Math. Phys.*
**57** (1975), 135–148.

18.

T.-P. Liu, Decay to *N*-waves of solutions of general systems of nonlinear hyperbolic conservation laws, *Comm. Pure Appl. Math.*
**30** (1977), 585–610.

19.

T. P. Liu, Linear and nonlinear large-time behavior of solutions of general systems of hyperbolic conservation laws, *Comm. Pure Appl. Math.*
**30** (1977), 767–796.

20.

V. J. Ljapidevskii, On correctness classes for nonlinear hyperbolic systems, *Soviet Math. Dokl.*
**16** (1975), 1505–1509.

21.

B. J. Lucier, Error bounds for the methods of Glimm, Godunov and LeVeque, *SIAM J. Num. Anal.*
**22** (1985), 1074–1081.

22.

G. Pimbley, A semigroup for Lagrangian 1D isentropic flow, in *Transport theory*, invariant imbedding and integral equations, G. Webb ed., M. Dekker, New York, 1989.

23.

N. H. Risebro, A front-tracking alternative to the random choice method, *Proc. Amer. Math. Soc.*
**117** (1993), 1125–1139.

24.

B. L. Roždestvenskii & N. Yanenko, Systems of quasilinear equations, *Amer. Math. Soc. Translations of Mathematical Monographs*, Vol. 55, 1983.

25.

J. Smoller, *Shock Waves and Reaction-Diffusion Equations*, Springer-Verlag, New York, 1983.