Skip to main content
Log in

Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves

  • Published:
Planta Aims and scope Submit manuscript

Abstract

A series of experiments is presented investigating short term and long term changes of the nature of the response of rate of CO2 assimilation to intercellular p(CO2). The relationships between CO2 assimilation rate and biochemical components of leaf photosynthesis, such as ribulose-bisphosphate (RuP2) carboxylase-oxygenase activity and electron transport capacity are examined and related to current theory of CO2 assimilation in leaves of C3 species. It was found that the response of the rate of CO2 assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at low and high intercellular p(CO2). In longer term changes in CO2 assimilation rate, induced by different growth conditions, the initial slope of the response of CO2 assimilation rate to intercellular p(CO2) could be correlated to in vitro measurements of RuP2 carboxylase activity. Also, CO2 assimilation rate at high p(CO2) could be correlated to in vitro measurements of electron transport rate. These results are consistent with the hypothesis that CO2 assimilation rate is limited by the RuP2 saturated rate of the RuP2 carboxylase-oxygenase at low intercellular p(CO2) and by the rate allowed by RuP2 regeneration capacity at high intercellular p(CO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnon, D.I. (1949) Copper enzyme in isolated chloroplasts. Polyphenoloxydase in Beta vulgaris. Plant Physiol. 24, 1–15

    Google Scholar 

  • Badger, M.R., Collatz, G.J. (1977) Studies on the kinetic mechanism of ribulose-1,5-bisphosphate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie Inst. Wash. Year Book 76, 355–361

    Google Scholar 

  • Björkman, O. (1971) Interaction between the effects of oxygen and CO2 concentration on quantum yield and light-saturated rate of photosynthesis in leaves of Atriplex patula ssp. spicata. Carnegie Inst. Wash. Year Book 70, 520–526

    Google Scholar 

  • Björkman, O. (1981) Plant responses to different light intensities. In: Physiological plant ecology, Vol. 12A: Interactions with the physical environment, Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., eds., Heidelberg, Springer-Verlag (in press)

    Google Scholar 

  • Björkman, O., Badger, M. (1979) Time course of thermal acclimation of the photosynthetic apparatus in Nerium oleander. Carnegie Inst. Wash. Year Book 78, 145–148

    Google Scholar 

  • Björkman, O., Boardman, N.K., Anderson, J.M., Thorne, S.W., Goodchild, D.J., Pyliotis, N.A. (1972) Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure. Carnegie Inst. Wash. Year Book 71, 115–135

    Google Scholar 

  • Canvin, D.T., Berry, J.A., Badger, M.R., Fock, H., Osmond, C.B. (1980) Oxygen exchange in leaves in the light. Plant Physiol. 66, 302–307

    Google Scholar 

  • Catský, J., Tichá, I., Solárová, J. (1976) Ontogenetic changes to bean leaf photosynthesis. 1. Carbon dioxide exchange and conductance for carbon dioxide transfer. Photosynthetica 10, 394–402

    Google Scholar 

  • Collatz, G.J. (1977) Influence of certain environmental factors on photosynthesis and photorespiration in Simmondsia chinensis. Planta 134, 127–132

    Google Scholar 

  • Collatz, G.J. (1978) The interaction between photosynthesis and ribulose-P2 concentration-effects of light, CO2 and O2. Carnegie Inst. Wash. Year Book 77, 248–251

    Google Scholar 

  • Cowan, I.R. (1977) Stomatal behaviour and environment. In: Advances in botanical research, pp. 117–228, Preston, R.D., Woolhouse, H.W., eds., Academic Press, London

    Google Scholar 

  • Cowan, I.R., Farquhar, G.D. (1977) Stomatal function in relation to leaf metabolism and environment. In: Integration of activity in higher plants. Soc. Exp. Biol. Symp. 31, 471–505 Jennings, D.H., ed.

  • Farquhar, G.D. (1979) Models describing the kinetics of ribulose bisphosphate carboxylase-oxygenase. Arch. Biochem. Biophys. 193, 456–468

    PubMed  Google Scholar 

  • Farquhar, G.D., von Caemmerer, S. (1980) Electron transport limitations on the CO2 assimilation rate of leaves: A model and some observations in Phaseolus vulgaris L. In: Abstracts of the Fifth International Congress on Photosynthesis, Halkidiki (Greece), p. 176

  • Farquhar, G.D., von Caemmerer, S. (1981) Modelling of photosynthetic response to environmental conditions. In: Physiological plant ecology, Vol. 12 B: Water relations and photosynthetic productivity, Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., eds., Springer-Verlag, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Farquhar, G.D., von Caemmerer, S., Berry, J.A. (1980a) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90

    Google Scholar 

  • Farquhar, G.D., Schulze, E.-D., Küppers, M. (1980b) Responses to humidity by stomata of Nicotiana glauca and Corylus avellana L. are consistent with the optimisation of carbon dioxide uptake with respect to water loss. Aust. J. Plant Physiol. 7, 315–327

    Google Scholar 

  • Hardwick, K., Wood, M., Woolhouse, H.W. (1968) Photosynthesis and respiration in relation to leaf age in Perilla fructescens (L.) Britt. New Phytol. 67, 79–86

    Google Scholar 

  • Hewitt, E.J., Smith, T.A. (1975) Plant mineral nutrition. The English University Press, London

    Google Scholar 

  • Jarman, P.D. (1974) The diffusion of carbon dioxide and water vapour through stomata. J. Exp. Bot. 25, 927–936

    Google Scholar 

  • Jenkins, G.I., Woolhouse, H.W. (1981) Photosynthetic electron transport during senescence of the primary leaves of Phaseolus vulgaris L. I. Non-cyclic electron transport. J. Exp. Bot. (in press)

  • Kays, W.M. (1966) Convective Heat and Mass Transfer. McGraw-Hill, New York

    Google Scholar 

  • Kirk, J.T.O., Tilney-Bassett, R.A.E. (1978) The Plastids, 2nd edn. Elsevier/North-Holland Biomedical Press, Amsterdam New York Oxford

    Google Scholar 

  • Ku, S., Edwards, G. (1977) Oxygen inhibition of photosynthesis. II. Kinetic characteristics as affected by temperature. Plant Physiol. 59, 991–999

    Google Scholar 

  • Laing, W.A., Christeller, J.T. (1976) A model for the kinetics of activation and catalysis of ribulose-1,5-bisphosphate carboxylase. Biochem. J. 159, 563–570

    PubMed  Google Scholar 

  • Laisk, A. (1970) A model of leaf photosynthesis and photorespiration. In: Prediction and measurement of photosynthetic productivity: Proc IBP/PP Tech. Meeting, Třeboň, 1969, pp. 295–306. Pudoc, Wageningen

    Google Scholar 

  • Laisk, A., Oya, V.M. (1974) Photosynthesis of leaves subjected to brief impulses of CO2. Soviet J. Plant Physiol. 21, 928–935

    Google Scholar 

  • Leegood, R.C., Walker, D.A. (1980) Autocatalysis and light activation of enzymes in relation to photosynthetic induction in wheat chloroplasts. Arch. Biochem. Biophys. 200, 575–582

    PubMed  Google Scholar 

  • Lilley, R.McC., Walker, D.A. (1975) Carbon dioxide assimilation by leaves, isolated chloroplasts and ribulose bisphosphate carboxylase from spinach. Plant Physiol. 55, 1087–1092

    Google Scholar 

  • Lorimer, G.H., Badger, M.R., Andrews, T.J. (1976) The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry 15, 529–536

    PubMed  Google Scholar 

  • Lorimer, G.H., Badger, M.R., Andrews, T.J. (1977) D-ribulose-1,5-bisphosphate carboxylase-oxygenase: improved methods for the activation and assay of catalytic activites. Anal. Biochem. 78, 66–75

    PubMed  Google Scholar 

  • Medina, E. (1969) Relationships between nitrogen level, photosynthetic capacity and carboxy-dismutase activity in Atriplex patula leaves. Carnegie Inst. Wash. Year Book 68, 655–662

    Google Scholar 

  • Meidner, H. (1970) Precise measurements of carbon dioxide exchange by illuminated leaves near the compensation point. J. Exp. Bot. 21, 1067–1075

    Google Scholar 

  • Peisker, M. (1976) Ein Modell der Sauerstoffabhängigkeit des photosynthetischen CO2-Gaswechsels von C3 Pflanzen. Kulturpflanze 24, 221–235

    Google Scholar 

  • Powles, S.B., Critchley, C. (1980) Effect of light intensity during growth on photoinibition of intact attached bean leaflets. Plant Physiol. 65, 1181–1187

    Google Scholar 

  • Robinson, S.P., McNeil, P.H., Walker, D.A. (1979) Ribulose bisphosphate carboxylase-lack of dark inactivation of the enzyme in experiments with protoplasts. FEBS Lett. 97 (2), 296–300

    Article  PubMed  Google Scholar 

  • Robinson, S.P., Walker, D.A. (1980) The significance of light activation of enzymes during the induction phase of photosynthesis in isolated chloroplasts. Arch. Biochem. Biophys. 202, 617–623

    PubMed  Google Scholar 

  • Shavit, N. (1980) Energy transduction in chloroplasts: Structure and function of the ATPase complex. Annu. Rev. Biochem. 49, 111–138

    PubMed  Google Scholar 

  • Sinclair, T.R., Goudriaan, J., de Wit, C.T. (1977) Mesophyll resistance and CO2 compensation concentration in leaf photosynthesis models. Photosynthetica 11, 56–65

    Google Scholar 

  • Tenhunen, J.D., Hesketh, J.D., Gates, D.M. (1980) Leaf photosynthesis models. In: Predicting photosynthesis for ecosystem models, Vol. 1, pp. 123–182, Hesketh, J.D., Jones, J.W., ed., CRC Press, Boca Raton

    Google Scholar 

  • Troughton, J.H., Slatyer, R.O. (1969) Plant water status, leaf temperature and the calculated mesophyll resistance to carbon dioxide of cotton leaves. Aust. J. Biol. Sci. 22, 815–827

    Google Scholar 

  • Wareing, P.F., Khalifa, M.M., Treharne, K.J. (1968) Rate-limiting processes in photosynthesis at saturating light intensities. Nature (London) 220, 453–457

    Google Scholar 

  • Wild, A., Rühle, W., Grahl, H. (1975) The effect of light intensity during growth of Sinapis alba on the electron transport and noncyclic photophosphorylation. In: Environmental and biological control of photosynthesis, Marcelle, R., ed., Dr. W. Junk G.V., Publishers, The Hague

    Google Scholar 

  • Wong, S.C. (1979) Elevated atmospheric partial pressure of CO2 and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants. Oecologia 44, 68–74

    Google Scholar 

  • Woodrow, I.E., Walker, D.A. (1980) Light-mediated activation of stromal sedoheptulose-1,7-bisphosphate. Biochem. J. 191, 845–849

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Caemmerer, S., Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387 (1981). https://doi.org/10.1007/BF00384257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384257

Key words

Navigation