Conformal curvature flows: From phase transitions to active vision
 Satyanad Kichenassamy,
 Arun Kumar,
 Peter Olver,
 Allen Tannenbaum,
 Anthony Yezzi Jr.
 … show all 5 hide
Abstract
In this paper, we analyze geometric active contour models from a curve evolution point of view and propose some modifications based on gradient flows relative to certain new featurebased Riemannian metrics. This leads to a novel edgedetection paradigm in which the feature of interest may be considered to lie at the bottom of a potential well. Thus an edgeseeking curve is attracted very naturally and efficiently to the desired feature. Comparison with the AllenCahn model clarifies some of the choices made in these models, and suggests inhomogeneous models which may in return be useful in phase transitions. We also consider some 3dimensional active surface models based on these ideas. The justification of this model rests on the careful study of the viscosity solutions of evolution equations derived from a levelset approach.
 S. M. Allen & J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27, 1085–1095, 1979.
 L. Alvarez, F. Guichard, P. L. Lions & J. M. Morel, Axiomes et equations fondamentales du traitement d'images, C. R. Acad. Sci. Paris 315, 135–138, 1992.
 L. Alvarez, F. Guichard, P. L. Lions & J. M. Morel, Axioms and fundamental equations of image processing, Report #9216, CEREMADE, Université Paris Dauphine, 1992; Arch. Rational Mech. Anal. 123, 200–257, 1993.
 L. Alvarez, F. Guichard, P. L. Lions & J. M. Morel, Axiomatisation et nouveaux operateurs de la morphologie mathematique, C. R. Acad. Sci. Paris 315, 265–268, 1992.
 L. Alvarez, P. L. Lions & J. M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Num. Anal. 29, 845–866, 1992.
 L. Alvarez & J. M. Morel, Formalization and computational aspects of image analysis, Report #0493, Department of Information and Systems, Universidad de las Palmas de Gran Canaria, 1993.
 B. Andrews, Contraction of convex hypersurfaces by their affine normal, submitted for publication, 1994.
 S. Angenent, On the formation of singularities in the curve shortening flow, J. Diff. Geom. 33, 601–633, 1991.
 S. Angenent & M. E. Gurtin, Multiphase thermomechanics with interfacial structure, 2: Evolution of an isothermal surface, Arch. Rational Mech. Anal. 108, 323–391, 1989.
 S. S. Antman, The equations for large vibrations of strings, Amer. Math. Monthly 87, 359–370, 1980.
 A. Blake & A. Yuille, Active Vision, MIT Press, 1992.
 K. A. Brakke, The Motion of a Surface by its Mean Curvature, Princeton University Press, 1978.
 L. Bronsard & R. V. Kohn, Motion by mean curvature as a singular limit of GinzburgLandau dynamics, J. Diff. Eqs. 90, 211–237, 1991.
 L. Bronsard & F. Reitich, On three phase boundary motion and the singular limit of a vectorvalued GinzburgLandau equation, Arch. Rational Mech. Anal. 124, 355–379, 1993.
 G. Caginalp, Stefan and HeleShaw type models as asymptotic limits of phase field equations, Phys. Rev. A 39, 887–896, 1989.
 V. Caselles, F. Catte, T. Coll & F. Dibos, A geometric model for active contours in image processing, Technical Report #9210, CEREMADE, Université Paris Dauphine, 1992.
 V. Caselles & C. Sbert, What is the best causal scalespace for 3D images?, Technical Report, Department of Math, and Comp. Sciences, University of Illes Balears, 07071 Palma de Mallorca, Spain, March 1994.
 Y.G. Chen, Y. Giga & S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Diff. Geom. 33, 749–786, 1991.
 B. Chow, Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Diff. Geom. 22, 117–138, 1985.
 M. G. Crandall & H. Ishii, The maximum principle for semicontinuous functions, Diff. Integral Eqs. 3, 1001–1014, 1990.
 M. G. Crandall, H. Ishii & P.L. Lions, Users guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27, 1–67, 1992.
 M. P. Do Carmo, Differential Geometry of Curves and Surfaces, PrenticeHall, 1976.
 M. P. Do Carmo, Riemannian Geometry, PrenticeHall, 1992.
 C. L. Epstein & M. Gage, The curve shortening flow, in Wave Motion: Theory, Modeling, and Computation, A. Chorin & A. Majda, Editors, SpringerVerlag, 1987.
 L. C. Evans & J. Spruck, Motion of level sets by mean curvature, I, J. Diff. Geom. 33, 635–681, 1991.
 L. C. Evans, H. M. Soner & P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45, 1097–1123, 1992.
 M. Gage, Curve shortening makes convex curves circular, Invent. Math. 76, 357–364, 1984.
 M. Gage & R. S. Hamilton, The heat equation shrinking convex plane curves, J. Diff. Geom. 23, 69–96, 1986.
 I. M. Gelfand & S. V. Fomin, Calculus of Variations, PrenticeHall, 1963.
 C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Diff. Geom. 32, 299–314, 1990.
 M. Grayson, A short note on the evolution of a surface by its mean curvature, Duke Math. J. 58, 555–558, 1989.
 M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Diff. Geom. 26, 285–314, 1987.
 M. Grayson, Shortening embedded curves, Ann. Math. 129, 71–111, 1989.
 A. Gupta, L. Von Kurowski, A. Singh, D. Geiger, C.C. Liang, M.Y. Chiu, L. P. Adler, M. Haacke & D. L. Wilson, Cardiac MRI analysis: segmentation of myocardial boundaries using deformable models preprint.
 M. E. Gurtin, Toward a nonequilibrium thermodynamics of twophase materials, Arch. Rational Mech. Anal. 100, 275–312, 1988.
 M. Gurtin, Multiphase thermomechanics with interfacial structure, 1: Heat conduction and the capillary balance law, Arch. Rational Mech. Anal, 104, 185–221, 1988.
 G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom. 20, 237–266, 1984.
 T. Ilmanen, Generalized flow of sets by mean curvature on a manifold, Indiana Univ. Math. J. 41, 671–705, 1992.
 M. Kass, A. Witkin & D. Terzopoulos, Snakes: active contour models, Int. J. Computer Vision 1, 321–331. 1987.
 S. Kichenassamy, A. Kumar, P. J. Olver, A. Tannenbaum & A. Yezzi, Gradient flows and geometric active contours, Proceedings of the Fifth International Conference on Computer Vision, 810–816, 1995.
 B. B. Kimia, A. Tannenbaum & S. W. Zucker, Toward a computational theory of shape: An overview, Lecture Notes in Computer Science 427, 402–407, SpringerVerlag, 1990
 B. B. Kimia, A. Tannenbaum & S. W. Zucker, Shapes, shocks and deformations, I, to appear in Int. J. Computer Vision.
 B. B. Kimia, A. Tannenbaum & S. W. Zucker, On the evolution of curves via a function of curvature, I: the classical case, J. Math. Anal. Appls. 163, 438–458, 1992.
 A. Kumar, Visual Information in a Feedback Loop, Ph.D. thesis, University of Minnesota, 1995.
 R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, 1992.
 P. L. Lions, Generalized Solutions of HamiltonJacobi Equations, Pitman, 1982.
 R. Malladi, J. Sethian & B. Vemuri, Shape modeling with front propagation: a level set approach, IEEE Trans. Pattern Anal. Machine Intell. 17, 158–175, 1995.
 F. Mokhatarian & A. Mackworth, A theory of multiscale, curvaturebased shape representation for planar curves, IEEE Trans. Pattern Anal. Machine Intell. 14, 789–805, 1992.
 F. Morgan, Riemannian Geometry, John and Bartlett, 1993.
 P. De Mottoni & M. Schatzman, Evolution géométrique d'interfaces, C. R. Acad. Sci. Paris, sér. I, Math. 309, 453–58, 1989.
 W. W. Mullins, Theory of thermal grooving, J. Appl. Phys. 28, 333–339, 1957.
 P. Neskovic & B. Kimia, Threedimensional shape representation from curvaturedependent deformations, Technical Report #128, LEMS, Brown University, 1994.
 R. H. Nochetto, M. Paolini & C. Verdi, A dynamic mesh method algorithm for curvature dependent evolving interfaces, Technical Report, University of Maryland, 1994.
 P. J. Olver, G. Sapiro & A. Tannenbaum, Geometric invariant evolution of surfaces and volumetric smoothing, to appear in SIAM J. Math. Anal., 1994.
 S. Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal. 21, 217–235, 1984.
 S. J. Osher & J. A. Sethian, Fronts propagation with curvature dependent speed: Algorithms based on HamiltonJacobi formulations, J. Comp. Phys. 79, 12–49, 1988.
 S. Osher & L. I. Rudin, Featureoriented image enhancement using shock filters, SIAM J. Num. Anal. 27, 919–940, 1990.
 P. Perona & J. Malik, Scalespace and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Machine Intell. 12, 629–639, 1990.
 M. H. Protter & H. F. Weinberger, Maximum Principles in Differential Equations, SpringerVerlag, 1984.
 J. Rubinstein, P. Sternberg & J. B. Keller, Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math. 49, 116–133, 1989.
 G. Sapiro & A. Tannenbaum, Affine invariant scalespace, Int. J. Computer Vision 11, 25–44, 1993.
 G. Sapiro & A. Tannenbaum, On invariant curve evolution and image analysis, Indiana Univ. Math. J. 42, 985–1009, 1993.
 J. A. Sethian, An Analysis of Flame Propagation, Ph.D. Dissertation, University of California, 1982.
 J. A. Sethian, Curvature and the evolution of fronts, Comm. Math. Phys. 101, 487–499, 1985.
 J. A. Sethian, A review of recent numerical algorithms for hypersurfaces moving with curvature dependent speed, J. Diff. Geom. 31, 131–161, 1989.
 J. A. Sethian & J. Strain, Crystal growth and dendritic solidification, J. Comp. Phys. 98, 1992.
 J. Smoller, Shock Waves and Reactiondiffusion Equations, SpringerVerlag, 1983.
 G. A. Sod, Numerical Methods in Fluid Dynamics, Cambridge University Press, 1985.
 M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, 1979.
 H. Tek & B. Kimia, Deformable bubbles in the reactiondiffusion space, Technical Report #138, LEMS, Brown University, 1994.
 D. Terzopoulos & A. Witkin, Constraints on deformable models: recovering shape and nonrigid motion, Artificial Intelligence 36, 91–123, 1988.
 D. Terzopoulos & R. Szelski, Tracking with Kalman snakes, in Active Vision edited by A. Blake & A. Zisserman, MIT Press, 1992.
 B. White, Some recent developments in differential geometry, Math. Intelligencer 11, 41–47, 1989.
 A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver & A. Tannenbaum, Geometric active contours for segmentation of medical imagery, to appear in IEEE Trans. Medical Imaging.
 A. Yezzi, S. Kichenassamy, P. Olver & A. Tannenbaum, A gradient surface approach to 3D segmentation, to appear in Proceedings of IS&T 49th Annual Conference.
 Title
 Conformal curvature flows: From phase transitions to active vision
 Journal

Archive for Rational Mechanics and Analysis
Volume 134, Issue 3 , pp 275301
 Cover Date
 19960901
 DOI
 10.1007/BF00379537
 Print ISSN
 00039527
 Online ISSN
 14320673
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Industry Sectors
 Authors

 Satyanad Kichenassamy ^{(1)} ^{(2)}
 Arun Kumar ^{(1)} ^{(2)}
 Peter Olver ^{(1)} ^{(2)}
 Allen Tannenbaum ^{(1)} ^{(2)}
 Anthony Yezzi Jr. ^{(1)} ^{(2)}
 Author Affiliations

 1. Department of Mathematics Department of Aerospace Engineering, University of Minnesota, 55455, Minneapolis, Minnesota
 2. Department of Electrical Engineering, University of Minnesota, 55455, Minneapolis, Minnesota