1.
S. M. Allen & J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall.
27, 1085–1095, 1979.
2.
L. Alvarez, F. Guichard, P. L. Lions & J. M. Morel, Axiomes et equations fondamentales du traitement d'images, C. R. Acad. Sci. Paris
315, 135–138, 1992.
3.
L. Alvarez, F. Guichard, P. L. Lions & J. M. Morel, Axioms and fundamental equations of image processing, Report #9216, CEREMADE, Université Paris Dauphine, 1992; Arch. Rational Mech. Anal.
123, 200–257, 1993.
4.
L. Alvarez, F. Guichard, P. L. Lions & J. M. Morel, Axiomatisation et nouveaux operateurs de la morphologie mathematique, C. R. Acad. Sci. Paris
315, 265–268, 1992.
5.
L. Alvarez, P. L. Lions & J. M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Num. Anal.
29, 845–866, 1992.
6.
L. Alvarez & J. M. Morel, Formalization and computational aspects of image analysis, Report #0493, Department of Information and Systems, Universidad de las Palmas de Gran Canaria, 1993.
7.
B. Andrews, Contraction of convex hypersurfaces by their affine normal, submitted for publication, 1994.
8.
S. Angenent, On the formation of singularities in the curve shortening flow, J. Diff. Geom.
33, 601–633, 1991.
9.
S. Angenent & M. E. Gurtin, Multiphase thermomechanics with interfacial structure, 2: Evolution of an isothermal surface, Arch. Rational Mech. Anal.
108, 323–391, 1989.
10.
S. S. Antman, The equations for large vibrations of strings, Amer. Math. Monthly
87, 359–370, 1980.
11.
A. Blake & A. Yuille, Active Vision, MIT Press, 1992.
12.
K. A. Brakke, The Motion of a Surface by its Mean Curvature, Princeton University Press, 1978.
13.
L. Bronsard & R. V. Kohn, Motion by mean curvature as a singular limit of Ginzburg-Landau dynamics, J. Diff. Eqs.
90, 211–237, 1991.
14.
L. Bronsard & F. Reitich, On three phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Arch. Rational Mech. Anal.
124, 355–379, 1993.
15.
G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of phase field equations, Phys. Rev. A
39, 887–896, 1989.
16.
V. Caselles, F. Catte, T. Coll & F. Dibos, A geometric model for active contours in image processing, Technical Report #9210, CEREMADE, Université Paris Dauphine, 1992.
17.
V. Caselles & C. Sbert, What is the best causal scale-space for 3D images?, Technical Report, Department of Math, and Comp. Sciences, University of Illes Balears, 07071 Palma de Mallorca, Spain, March 1994.
18.
Y.-G. Chen, Y. Giga & S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Diff. Geom.
33, 749–786, 1991.
19.
B. Chow, Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Diff. Geom.
22, 117–138, 1985.
20.
M. G. Crandall & H. Ishii, The maximum principle for semicontinuous functions, Diff. Integral Eqs.
3, 1001–1014, 1990.
21.
M. G. Crandall, H. Ishii & P.-L. Lions, Users guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc.
27, 1–67, 1992.
22.
M. P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.
23.
M. P. Do Carmo, Riemannian Geometry, Prentice-Hall, 1992.
24.
C. L. Epstein & M. Gage, The curve shortening flow, in Wave Motion: Theory, Modeling, and Computation, A. Chorin & A. Majda, Editors, Springer-Verlag, 1987.
25.
L. C. Evans & J. Spruck, Motion of level sets by mean curvature, I, J. Diff. Geom.
33, 635–681, 1991.
26.
L. C. Evans, H. M. Soner & P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math.
45, 1097–1123, 1992.
27.
M. Gage, Curve shortening makes convex curves circular, Invent. Math.
76, 357–364, 1984.
28.
M. Gage & R. S. Hamilton, The heat equation shrinking convex plane curves, J. Diff. Geom.
23, 69–96, 1986.
29.
I. M. Gelfand & S. V. Fomin, Calculus of Variations, Prentice-Hall, 1963.
30.
C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Diff. Geom.
32, 299–314, 1990.
31.
M. Grayson, A short note on the evolution of a surface by its mean curvature, Duke Math. J.
58, 555–558, 1989.
32.
M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Diff. Geom.
26, 285–314, 1987.
33.
M. Grayson, Shortening embedded curves, Ann. Math.
129, 71–111, 1989.
34.
A. Gupta, L. Von Kurowski, A. Singh, D. Geiger, C.-C. Liang, M.-Y. Chiu, L. P. Adler, M. Haacke & D. L. Wilson, Cardiac MRI analysis: segmentation of myocardial boundaries using deformable models preprint.
35.
M. E. Gurtin, Toward a non-equilibrium thermodynamics of two-phase materials, Arch. Rational Mech. Anal.
100, 275–312, 1988.
36.
M. Gurtin, Multiphase thermomechanics with interfacial structure, 1: Heat conduction and the capillary balance law, Arch. Rational Mech. Anal, 104, 185–221, 1988.
37.
G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom.
20, 237–266, 1984.
38.
T. Ilmanen, Generalized flow of sets by mean curvature on a manifold, Indiana Univ. Math. J.
41, 671–705, 1992.
39.
M. Kass, A. Witkin & D. Terzopoulos, Snakes: active contour models, Int. J. Computer Vision
1, 321–331. 1987.
40.
S. Kichenassamy, A. Kumar, P. J. Olver, A. Tannenbaum & A. Yezzi, Gradient flows and geometric active contours, Proceedings of the Fifth International Conference on Computer Vision, 810–816, 1995.
41.
B. B. Kimia, A. Tannenbaum & S. W. Zucker, Toward a computational theory of shape: An overview, Lecture Notes in Computer Science
427, 402–407, Springer-Verlag, 1990
42.
B. B. Kimia, A. Tannenbaum & S. W. Zucker, Shapes, shocks and deformations, I, to appear in Int. J. Computer Vision.
43.
B. B. Kimia, A. Tannenbaum & S. W. Zucker, On the evolution of curves via a function of curvature, I: the classical case, J. Math. Anal. Appls.
163, 438–458, 1992.
44.
A. Kumar, Visual Information in a Feedback Loop, Ph.D. thesis, University of Minnesota, 1995.
45.
R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, 1992.
46.
P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, 1982.
47.
R. Malladi, J. Sethian & B. Vemuri, Shape modeling with front propagation: a level set approach, IEEE Trans. Pattern Anal. Machine Intell.
17, 158–175, 1995.
48.
F. Mokhatarian & A. Mackworth, A theory of multiscale, curvature-based shape representation for planar curves, IEEE Trans. Pattern Anal. Machine Intell.
14, 789–805, 1992.
49.
F. Morgan, Riemannian Geometry, John and Bartlett, 1993.
50.
P. De Mottoni & M. Schatzman, Evolution géométrique d'interfaces, C. R. Acad. Sci. Paris, sér. I, Math.
309, 453–58, 1989.
51.
W. W. Mullins, Theory of thermal grooving, J. Appl. Phys.
28, 333–339, 1957.
52.
P. Neskovic & B. Kimia, Three-dimensional shape representation from curvature-dependent deformations, Technical Report #128, LEMS, Brown University, 1994.
53.
R. H. Nochetto, M. Paolini & C. Verdi, A dynamic mesh method algorithm for curvature dependent evolving interfaces, Technical Report, University of Maryland, 1994.
54.
P. J. Olver, G. Sapiro & A. Tannenbaum, Geometric invariant evolution of surfaces and volumetric smoothing, to appear in SIAM J. Math. Anal., 1994.
55.
S. Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal.
21, 217–235, 1984.
56.
S. J. Osher & J. A. Sethian, Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys.
79, 12–49, 1988.
57.
S. Osher & L. I. Rudin, Feature-oriented image enhancement using shock filters, SIAM J. Num. Anal.
27, 919–940, 1990.
58.
P. Perona & J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Machine Intell.
12, 629–639, 1990.
59.
M. H. Protter & H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984.
60.
J. Rubinstein, P. Sternberg & J. B. Keller, Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math.
49, 116–133, 1989.
61.
G. Sapiro & A. Tannenbaum, Affine invariant scale-space, Int. J. Computer Vision
11, 25–44, 1993.
62.
G. Sapiro & A. Tannenbaum, On invariant curve evolution and image analysis, Indiana Univ. Math. J.
42, 985–1009, 1993.
63.
J. A. Sethian, An Analysis of Flame Propagation, Ph.D. Dissertation, University of California, 1982.
64.
J. A. Sethian, Curvature and the evolution of fronts, Comm. Math. Phys.
101, 487–499, 1985.
65.
J. A. Sethian, A review of recent numerical algorithms for hypersurfaces moving with curvature dependent speed, J. Diff. Geom.
31, 131–161, 1989.
66.
J. A. Sethian & J. Strain, Crystal growth and dendritic solidification, J. Comp. Phys.
98, 1992.
67.
J. Smoller, Shock Waves and Reaction-diffusion Equations, Springer-Verlag, 1983.
68.
G. A. Sod, Numerical Methods in Fluid Dynamics, Cambridge University Press, 1985.
69.
M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, 1979.
70.
H. Tek & B. Kimia, Deformable bubbles in the reaction-diffusion space, Technical Report #138, LEMS, Brown University, 1994.
71.
D. Terzopoulos & A. Witkin, Constraints on deformable models: recovering shape and non-rigid motion, Artificial Intelligence
36, 91–123, 1988.
72.
D. Terzopoulos & R. Szelski, Tracking with Kalman snakes, in Active Vision edited by A. Blake & A. Zisserman, MIT Press, 1992.
73.
B. White, Some recent developments in differential geometry, Math. Intelligencer
11, 41–47, 1989.
74.
A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver & A. Tannenbaum, Geometric active contours for segmentation of medical imagery, to appear in IEEE Trans. Medical Imaging.
75.
A. Yezzi, S. Kichenassamy, P. Olver & A. Tannenbaum, A gradient surface approach to 3D segmentation, to appear in Proceedings of IS&T 49th Annual Conference.