, Volume 75, Issue 1, pp 99-104

Soil drying and its effect on leaf conductance and CO2 assimilation of Vigna unguiculata (L.) Walp

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Well watered plants of Vigna unguiculata (L.) Walp cv. California Blackeye No. 5 had maximum photosynthetic rates of 16 μmol m-2 s-1 (at ambient CO2 concentration and environmental parameters optimal for high CO2 uptake). Leaf conductance declined with increasing water vapour concentration difference between leaf and air (Δw), but it increased with increasing leaf temperature at a constant small Δw. When light was varied, CO2 assimilation and leaf conductance were correlated linearly. We tested the hypothesis that g was controlled by photosynthesis via intercellular CO2 concentration (c i). No unique relationship between (1) c i, (2) the difference between ambient CO2 concentration (c a) and c i, namely c a-c i, or (3) the c i/c a ratio and g was found. g and A appeared to respond to environmental factors fairly independently of each other. The effects of different rates of soil drying on leaf gas exchange were studied. At unchanged air humidity, different rates of soil drying were produced by using (a) different soils, (b) different irrigation schemes and (c) different soil volumes per plant. Although the soil dried to wilting point the relative leaf water content was little affected. Different soil drying rates always resulted in the same response of photosynthetic capacity (A max) and corresponding leaf conductance (g(Amax)) when plotted against percent relative plant-extractable soil water content (W e %) but the relationship with relative soil water content (W e ) was less clear. Above a range of W e of 15%–25%, A max and g(Amax) were both high and responded little to decreasing W e . As soon as W e fell below this range, A max and g(Amax) declined. The data suggest root-to-leaf communication not mediated via relative leaf water content. However, g(Amax) was initially more affected than A max.