, Volume 78, Issue 4, pp 458-467

Prolonged prey suppression by carnivores — predator-removal experiments

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

The hypothesis that carnivores can significantly suppress prey populations after they collapse during drought was tested by predator-removal experiments. Low populations of rabbits (Oryctolagus cuniculus) responded with significantly accelerated growth where foxes (Vulpes vulpes) and feral cats (Felis catus) were continually shot. Experiments in years of good pasture and poor were confirmatory. After only 14 months, the rabbits were well on their way to another eruption whereas untreated populations had remained low for 2.5 yrs until a second drought. These studies confirm the impact of carnivores found for low populations of cyclical prey but there was no measurable effect of predator-removal on the population declines in our studies. They were due to aridity and poor pastures. The concept of Environmentally Modulated Predation is presented. Only after the intervention of a widespread environmental event is such limiting predation possible. Drought is also the cause in arid Australia for dingoes (Canis familiaris dingo) preying seqenntially on rodents, rabbits and red kangaroos, while wildfire was the cause in temperate forests. Such environmental intervention may be more widespread than usually considered, triggering some apparent predator-prey cycles. The major factors limiting rabbits in inland Australia are: adequacy of green herbage during breeding, food scarcity during average summers, critical shortages of food and its low quality (including moisture content) during ‘crashes’ in drought, followed by limiting predation. Contrasting life-histories are one cause for the ultimate escape of rabbit populations from limiting predation as rabbits can breed continuously but carnivores seasonally only. Patchy predation and alternate prey may also play a part.