, Volume 79, Issue 4, pp 551-557

Lack of compensatory growth under phosphorus deficiency in grazing-adapted grasses from the Serengeti Plains

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Two shortgrass species (Sporobolus ioclados and Eustachys paspaloides) and two midgrass species (E. paspaloides and Pennisetum mezianum) from the Serengeti grasslands of Tanzania were grown under conditions of extreme phosphorus (P) deficiency. Production of each of these species is maintained or enhanced by defoliation under adequate nutrient supply (McNaughton et al. 1983). However, under the P-deficient conditions of our experiment, defoliation caused a reduction in biomass of all plant parts of each species. Green leaf biomass was reduced most strongly by defoliation, and crowns were least affected. Yield of biomass and nutrients to grazers (green leaves+clipped material) was enhanced by weekly defoliation in the shortgrass grazing-adapted species, whereas yield to producers (live biomass and nutrients retained by the plant) and yield to decomposers (litter) were strongly reduced by defoliation in all species. Phosphate absorption capacity (V max) measured on excised roots was enhanced by defoliation in the grazing-adapted Sporobolus, but, due to low affinity (high K m) of roots of defoliated plants for phosphate, absorption rate was not greatly altered at low solution concentrations. Phosphate absorption capacity was reduced or unaffected by defoliation in other species. We conclude that under conditions of P deficiency, plants are unable to acquire the nutrients necessary to replenish large nutrient losses to grazers. In low-nutrient environments, compensatory growth (stimulation of production by grazing) is not a viable strategy. Therefore, in these environments plants respond evolutionarily to herbivores by developing chemical or morphological defenses.