, Volume 75, Issue 2, pp 207-212

Crown light environments of saplings of two species of rain forest emergent trees

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

The crown light environments of saplings of two Costa Rican rain forest tree species were simultaneously compared. The species, Dipteryx panamensis (Pitt.) Record & Mell., a relatively shade-intolerant species, and Lecythis ampla Miers, a shade-tolerant species, have contrasting growth and branching patterns. Quantum sensors were placed throughout the crowns of saplings up to 2.5 m tall and quantum fluxes were recorded with microloggers for seven-day periods. The shade-intolerant species had total quantum flux densities 35% larger than those of the shade-tolerant species, but totals for both species were less than 2% of full sun. More than 90% of the quantum flux densities measured within the crowns of both species were less than 25 μmol m-2s-1. Lateral light was an important component of daily quantum flux totals; for saplings of both species, the half-hour with the maximum average irradiance for the day frequently occurred in mid-morning or midafternoon. Despite dissimilar crown and leaf display, there was no difference in the overall variability of irradiance within the crowns of the two species. However, quantum fluxes received within the crowns differed substantially in both species. Within-crown locations differed significantly from day to day because of variation in weather conditions. Daily total quantum flux densities and totals expressed as a percent of full sun were significantly correlated with height growth over the previous 12 months.