, Volume 56, Issue 1, pp 1-9

Plant-herbivore interactions in a North American mixed-grass prairie

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Research was conducted to determine the effects of a native, sedentary rodent of North American grasslands, the black-tailed prairie dog (Cynomys ludovicianus), on seasonal aboveground plant biomass and nutrient dynamics and plant species diversity. The study was done on a northern mixed-grass prairie site at wind Cave National Park, South Dakota.

Peak live plant biomass was greatest (190 g/m2) on the uncolonized part of the study area and least (95 g/m2) on a part of the prairie dog town colonized for 3 to 8 y. Peak live plant biomass (170 g/m2) of the oldest portion of the prairie dog town (colonized >26 y) was not significantly different from that of uncolonized prairie. However, where-as graminoids composed >85% of the total biomass of the latter area, forbs and dwarf shrubs (Artemisia frigida) were >95% of the total of the former. Both standing-dead plant biomass and litter declined markedly as time since colonization increased. Total plant species diversity (H) was greatest in the young prairie dog town (colonized for 3 to 8 y).

Nitrogen concentration of plant shoots varied significantly as a function of time since colonization. Shoot-nitrogen was lowest in plants from the uncolonized site and greatest in plants collected from the longest-colonized areas of the prairie dog town. Shoot-nitrogen declined significantly over the growing season and tended to be higher in C3 graminoids than in C4 graminoids. In vitro digestible dry matter showed similar trends; the differences between C3 and C4 digestibilities were greatest during the last half of the growing season.

We suggest that prairie dog-induced changes in plant biomass, plant species diversity, plant nutrient content, and forage digestibility may lead to further alterations of nutrient cycling and trophic dynamics in this mixed-grass prairie ecosystem.