Adrenaline-induced leucocytosis: recruitment of blood cells from rat spleen, bone marrow and lymphatics

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

It is well known that adrenaline causes leucocytosis, but the sources and the mechanisms of this have not been clarified. We investigated the contributions of subpopulations of white blood cells to this leucocytosis and the importance of the spleen, bone marrow and lymphatics in releasing leucocytes into the blood stream following an injection of adrenaline. We studied possible effects of adrenaline on blood flow to the spleen and bone marrow to see if any contribution to leucocytosis from these organs could be perfusion dependent. In intact awake rats, total blood leucocytes increased within 5 min to about 220% of baseline concentration, the increases of lymphocytes and neutrophilic granulocytes being about 250% and 160%, respectively. The T and B lymphocytes and natural killer cells were all mobilized, to about 230% to 250% of baseline concentrations. The leucocytosis was short-lasting, so that the cell concentrations returned to baseline within 25 min after adrenaline injection. The bone marrow, spleen, and efferent lymphatics all contributed substantially to this leucocytosis, since band-nucleated granulocytes increased upon adrenaline injection, and splenectomized or thoracic duct drained rats showed a markedly reduced leucocytosis in response to adrenaline. Supplementary data were obtained with bone marrow depleted (with 89Sr irradiation) rats. The release of leucocytes from these organs was apparently not blood-flow dependent in the control rats since organ perfusion remained unaltered after adrenaline injection. Adrenaline was found to stimulate the release of both mono- and polymorphonuclear cells in the awake rat and the release of leucocytes from the spleen, bone marrow and efferent lymphatics to contribute significantly to the leucocytosis.