[AH]

N. D. Alikakos & P. Hess, On stabilization of discrete monotone dynamical systems, *Israel J. Math.*
**59** (1987), 185–194.

[AHM]

N. D. Alikakos, P. Hess & H. Matano, Discrete order preserving semigroups and stability for periodic parabolic differential equations, *J. Diff. Eq.*
**82** (1989), 322–341.

[DH]

E. N. Dancer & P. Hess, Stability of fixed points for order-preserving discrete-time dynamical systems, *J. reine angew. Math*, to appear.

[He1]

P. Hess, On stabilization of discrete strongly order-preserving semigroups and dynamical processes, in *Semigroup Theory and Applications*, P. Clément (ed.), Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, 1989.

[He2]

P. Hess, *Periodic Parabolic Boundary-Value Problems and Positivity*, Pitman Research Notes in Mathematics, Vol. **247**, 1991.

[Hi1]

M. W. Hirsch, Stability and convergence in strongly monotone dynamical Systems, *J. reine angew. Math.*
**383** (1988), 1–58.

[Hi2]

M. W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone flows, *Contemp. Math.*
**17**, Amer. Math. Soc. 1983, 267–285.

[K]

T. Kato, *Perturbation Theory for Linear Operators*, Springer-Verlag, 1966.

[KFS]

I. P. Kornfeld, S. V. Fomin & Y. G. Sinai, *Ergodic Theory*, Springer-Verlag, 1982.

[M1]

R. Mañé, *Ergodic Theory and Differentiable Dynamics*, Springer-Verlag, 1987.

[M2]

R. Mañé, Lyapunov exponents and stable manifolds for compact transformations, in: *Geometric Dynamics*, J. Palis (ed.), Lecture Notes in Mathematics vol. **1007**, Springer-Verlag, 1983, 522–577.

[Ma]

H. Matano, Strong comparison principle in nonlinear parabolic equations, in *Nonlinear Parabolic Equations: Qualitative Properties of Solutions*, L. Boccardo, A. Tesei (eds.), Pitman, 1987, 148–155.

[Mi1]

J. Mierczyński, On a generic behavior in strongly cooperative differential equations, *Colloquia Mathematica Societatis János Bolyai* Vol. **53**, North-Holland, 1990, 402–406.

[Mi2]

J. Mierczyński, Flows on ordered bundles, preprint.

[Mo]

X. Mora, Semilinear problems define semiflows on *C*
^{
k
}spaces, *Trans. Amer. Math. Soc.*
**278** (1983), 1–55.

[Os]

V. I. Oseledec, A multiplicative ergodic theorem, *Trans. Moscow Math. Soc.*
**19** (1968), 197–231.

[P1]

P. Poláčik, Convergence in smooth strongly monotone flows defined by semilinear parabolic equations, *J. Diff. Eq.*
**79** (1989), 89–110.

[P2]

P. Poláčik, Generic properties of strongly monotone semiflows defined by ordinary and parabolic differential equations, *Colloquia Mathematica Societatis János Bolyai* Vol. 53, North-Holland, 1990, 402–406.

[P3]

P. Poláčik, Imbedding of any vector field in scalar semilinear parabolic equation, *Proc. Amer. Math. Soc.*, to appear.

[PT]

P. Poláčik & I. Tereščák, in preparation.

[R]

D. Ruelle, Analyticity properties of the characteristic exponents of random matrix products, *Advances Math.*
**32** (1979), 68–80.

[ST1]

H. L. Smith & H. R. Thieme, Quasi convergence and stability for order-preserving semiflows, *SIAM J. Math. Anal.*
**21** (1990), 673–692.

[ST2]

H. L. Smith & H. R. Thieme, Convergence for strongly order-preserving semiflows, *SIAM J. Math. Anal.*, **22** (1991), 1081–1101.

[T1]

P. Takáč, Convergence to equilibrium on invariant *d*-hypersurfaces for strongly increasing discrete-time dynamical systems, *J. Math. Anal. Appl.*
**148** (1990), 223–244.

[T2]

P. Takáč, Domains of attraction of generic *ω*-limit set for strongly monotone semiflows, *Z. Anal. Anwendungen*, to appear.

[T3]

P. Takáč, Asymptotic behavior of strongly monotone time-periodic dynamical processes with symmetry, *J. Diff. Eq.*, to appear.

[T4]

P. Takáč, Linearly stable subharmonic orbits in strongly monotone time-periodic dynamical systems, *Proc. Amer. Math. Soc.*, to appear.

[T5]

P. Takáč, Domains of attraction of generic *ω*-limit sets for strongly monotone discrete-time semigroups, *J. reine angew. Math.*, to appear.