Archive for Rational Mechanics and Analysis

, Volume 123, Issue 3, pp 199–257

Axioms and fundamental equations of image processing

Authors

  • Luis Alvarez
    • Departamento de Informatica y SistemasUniversidad de Las Palmas
    • Ceremade, Université Paris-Dauphine
  • Frédéric Guichard
    • Departamento de Informatica y SistemasUniversidad de Las Palmas
    • Ceremade, Université Paris-Dauphine
  • Pierre -Louis Lions
    • Departamento de Informatica y SistemasUniversidad de Las Palmas
    • Ceremade, Université Paris-Dauphine
  • Jean -Michel Morel
    • Departamento de Informatica y SistemasUniversidad de Las Palmas
    • Ceremade, Université Paris-Dauphine
Article

DOI: 10.1007/BF00375127

Cite this article as:
Alvarez, L., Guichard, F., Lions, P.-. et al. Arch. Rational Mech. Anal. (1993) 123: 199. doi:10.1007/BF00375127

Abstract

Image-processing transforms must satisfy a list of formal requirements. We discuss these requirements and classify them into three categories: “architectural requirements” like locality, recursivity and causality in the scale space, “stability requirements” like the comparison principle and “morphological requirements”, which correspond to shape-preserving properties (rotation invariance, scale invariance, etc.). A complete classification is given of all image multiscale transforms satisfying these requirements. This classification yields a characterization of all classical models and includes new ones, which all are partial differential equations. The new models we introduce have more invariance properties than all the previously known models and in particular have a projection invariance essential for shape recognition. Numerical experiments are presented and compared. The same method is applied to the multiscale analysis of movies. By introducing a property of Galilean invariance, we find a single multiscale morphological model for movie analysis.

Copyright information

© Springer-Verlag 1993