, Volume 98, Issue 4, pp 455-489

Crustal contributions to arc magmatism in the Andes of Central Chile

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Fifteen andesite-dacite stratovolcanoes on the volcanic front of a single segment of the Andean arc show along-arc changes in isotopic and elemental ratios that demonstrate large crustal contributions to magma genesis. All 15 centers lie 90 km above the Benioff zone and 280±20 km from the trench axis. Rate and geometry of subduction and composition and age of subducted sediments and seafloor are nearly constant along the segment. Nonetheless, from S to N along the volcanic front (at 57.5% SiO2) K2O rises from 1.1 to 2.4 wt %, Ba from 300 to 600 ppm, and Ce from 25 to 50 ppm, whereas FeO*/MgO declines from >2.5 to 1.4. Ce/Yb and Hf/Lu triple northward, in part reflecting suppression of HREE enrichment by deep-crustal garnet. Rb, Cs, Th, and U contents all rise markedly from S to N, but Rb/Cs values double northward — opposite to prediction were the regional alkali enrichment controlled by sediment subduction. K/Rb drops steeply and scatters greatly within many (biotite-free) andesitic suites. Wide diversity in Zr/Hf, Zr/Rb, Ba/Ta, and Ba/La within and among neighboring suites (which lack zircon and alkali feldspar) largely reflects local variability of intracrustal (not slab or mantle) contributions. Pb-isotope data define a limited range that straddles the Stacey-Kramers line, is bracketed by values of local basement rocks, in part plots above the field of Nazca plate sediment, and shows no indication of a steep (mantle+sedimentary) Pb mixing trend. 87Sr/86Sr values rise northward from 0.7036 to 0.7057, and 143Nd/144Nd values drop from 0.5129 to 0.5125. A northward climb in basal elevation of volcanic-front edifices from 1350 m to 4500 m elevation coincides with a Bougueranomaly gradient from −95 to −295 mgal, interpreted to indicate thickening of the crust from 30–35 km to 50–60 km. Complementary to the thickening crust, the mantle wedge beneath the front thins northward from about 60 km to 30–40 km (as slab depth is constant). The thick northern crust contains an abundance of Paleozoic and Triassic rocks, whereas the proportion of younger arc-intrusive basement increases southward. Primitive basalts are unknown anywhere along the arc. Base-level isotopic and chemical values for each volcano are established by blending of subcrustal and deep-crustal magmas in zones of melting, assimilation, storage and homogenization (MASH) at the mantle-crust transition. Scavenging of mid-to upper-crustal silicic-alkalic melts and intracrustal AFC (prominent at the largest center) can subsequently modify ascending magmas, but the base-level geochemical signature at each center reflects the depth of its MASH zone and the age, composition, and proportional contribution of the lowermost crust.