Archives of Dermatological Research

, Volume 285, Issue 6, pp 352–355

The effect of reactive oxygen species on the biosynthesis of collagen and glycosaminoglycans in cultured human dermal fibroblasts

Authors

  • H. Tanaka
    • Biochemical Research InstituteNippon Menard Cosmetic Co. Ltd.
  • T. Okada
    • Biochemical Research InstituteNippon Menard Cosmetic Co. Ltd.
  • H. Konishi
    • Biochemical Research InstituteNippon Menard Cosmetic Co. Ltd.
  • T. Tsuji
    • Department of DermatologyNagoya City University, Medical School
Short Communications

DOI: 10.1007/BF00371836

Cite this article as:
Tanaka, H., Okada, T., Konishi, H. et al. Arch Dermatol Res (1993) 285: 352. doi:10.1007/BF00371836

Abstract

The purpose of this study was to evaluate the possibility that the biological changes observed in connective tissue matrix components of photoaging skin may be induced by an alteration of biosynthesis in fibroblasts damaged by reactive oxygen species (ROS). We investigated the effect of ROS induced by xanthine and the xanthine oxidase system on the biosynthesis of connective tissue matrix components, collagen and glucosaminoglycans (GAGs) in cultured human dermal fibroblasts. ROS decreased collagen production and increased GAGs synthesis. Interestingly, these changes were consistent with the biological alterations of connective tissue matrix components observed in photoaging skin. Moreover, catalase and alpha-tocopherol completely prevented the ROS-induced alterations of collagen and GAGs biosynthesis, whereas superoxide dismutase had no effect on the ROS-induced changes. These results suggest that ROS may be one of the factors which cause the biological changes of connective tissue matrix components observed in photoaging skin.

Key words

Reactive oxygen speciesCollagenGlycosaminoglycansFibroblastsPhotoaging

Copyright information

© Springer-Verlag 1993