Computational Mechanics

, Volume 10, Issue 5, pp 307–318

Generalizing the finite element method: Diffuse approximation and diffuse elements

  • B. Nayroles
  • G. Touzot
  • P. Villon
Article

DOI: 10.1007/BF00364252

Cite this article as:
Nayroles, B., Touzot, G. & Villon, P. Computational Mechanics (1992) 10: 307. doi:10.1007/BF00364252

Abstract

This paper describes the new “diffuse approximation” method, which may be presented as a generalization of the widely used “finite element approximation” method. It removes some of the limitations of the finite element approximation related to the regularity of approximated functions, and to mesh generation requirements. The diffuse approximation method may be used for generating smooth approximations of functions known at given sets of points and for accurately estimating their derivatives. It is useful as well for solving partial differential equations, leading to the so called “diffuse element method” (DEM), which presents several advantages compared to the “finite element method” (FEM), specially for evaluating the derivatives of the unknown functions.

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • B. Nayroles
    • 1
  • G. Touzot
    • 2
  • P. Villon
    • 3
  1. 1.Institut de Mécanique de GrenobleCNRS (UMR 101)-Université Joseph FourierGrenobleFrance
  2. 2.Université de Technologie de Compiègne-CNRS (D 6063)-Pôle de Modélisation PicardieCompiègneFrance
  3. 3.Université de Technologie de Compiègne-CNRS (URA 817)-Pôle de Modélisation PicardieCompiègneFrance