, Volume 116, Issue 4, pp 593-602

Genetic evidence of population heterogeneity and cryptic speciation in the ommastrephid squid Martialia hyadesi from the Patagonian Shelf and Antarctic Polar Frontal Zone

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Horizontal starch gel electrophoresis was used to investigate levels of genetic differentiation between four samples of the nominate squid species Martialia hyadesi Rochbrune and Mabille, 1889, obtained from regions of the Patagonian Shelf and Antarctic Polar Fron-tal Zone over 1000 km apart. M. hyadesi is an ecologically important South Atlantic ommastrephid squid and it is probable that, in the future, fishing effort will be increasingly directed towards this species. Details regarding the population structure of the species are therefore required. In comparison with the other three samples of M. hyadesi, one of the samples from the Patagonian Shelf (PAT 89II) exhibited fixed allelic differences at 16 of the 39 enzyme loci which were resolved (genetic identity, I=0.51). This high level of genetic differentiation contradicts the apparent morphological similarity between samples, indicating the presence of a cryptic or sibling congeneric species. Deviations from Hardy-Weinberg equilibrium and significant differences in allele distribution were also detected within and between the other three putative M. hyadesi samples, suggesting that the species fails to maintain effective panmixia across its geographical range. The occurrence of both temporal (1986 cf. 1989) and geographic structuring within the species complex is consequently indicated, caused possibly by an overlap of reproductively isolated stocks (stock mixing) outside their respective breeding areas. Low levels of genetic variability were detected throughout the samples examined, estimates of average heterozygosity per locus within the two species detected being in the order of 0.01 and 0.002. These values are discussed in relation to levels of genetic variability reported for other squid species, and in comparison with values typically expected for marine invertebrates.

Communicated by J. Mauchline, Oban