1.

L. Babai and D. Duffus (1981) Dimension and automorphism groups of lattices, *Alg. Univ.*
**12**, 279–289.

2.

B. Dushnik (1950) Concerning a certain set of arrangements *Proc. Amer. Math. Soc.*
**1**, 788–796.

3.

B. Dushnik and E. W. Miller (1941) Partially ordered sets, *Amer. J. Math.*
**63**, 600–610.

4.

I. Fáry (1948) On straight line representation of planar graphs, *Acta Sci. Math. Szeged*
**11**, 229–233.

5.

T. Gallai (1967) Transitiv orientierbare Graphen, *Acta Math. Acad. Sci. Hungar.*
**18**, 25–66.

6.

M. C. Golumbic (1977) The complexity of comparability graph recognition and coloring, *Computing*
**18**, 199–203.

7.

R. Gysin (1977) Dimension transitiv orientierbarer Graphen, *Acta Math. Acad. Sci. Hungar*
**29**, 313–316.

8.

T. Hiraguchi (1951) On the dimension of orders, *Sci. Rep. Kanazawa Univ*
**1**, 77–94.

9.

G. R. Kampen (1976) Orienting planar graphs, *Discrete Math.*
**14**, 337–341.

10.

D. Kelly (1977) The 3-irreducible partially ordered sets, *Canad. J. Math.*
**29**, 367–383.

11.

H. Komm (1948) On the dimension of partially ordered sets, *Amer. J. Math.*
**70**, 507–520.

12.

D. Kelly and W. T. TrotterJr. (1982) Dimension theory for ordered sets, in I. Rival (ed.), *Ordered Sets*, D. Reidel, Dordrecht, pp. 171–211.

13.

C. St. J. A. Nash-Williams (1961) Edge disjoint trees of finite graphs, *J. London Math. Soc.*
**36**, 445–450.

14.

J. Spencer (1971) Minimal acrambling sets of simple orders, *Acta Math. Acad. Sci. Hungar.*
**22**, 349–353.

15.

V. Sedmak (1954) Quelques applications des ensembles ordonnés., *Bull. Soc. Math. Phys. Serbie*
**6**, 12–39, 131–153.

16.

S. K. Stein (1951) Convex maps, *Proc. Amer. Math. Soc.*
**2**, 464–466.

17.

E. Szpilrajn (1930) Sur l'extension de l'ordre partiel, *Fund. Math.*
**16**, 386–389.

18.

W. T. TrotterJr. (1983) Graphs and Partially Ordered Sets, in L. Beineke (ed.), *Graph Theory*, Vol. **2**, Academic Press, London, pp. 237–268.

19.

W. T. Trotter Jr and J. I. Moore Jr. (1976) Characterization problems for graphs, partially ordered sets, lattices and families of sets, *Discrete Math.*
**16**, 361–381.

20.

W. T. Trotter, J. I. Moore and D. P. Sumner (1976) The dimension of a comparability graph, *Proc. Amer. Math. Soc.*
**60**, 35–38.

21.

K. Wagner (1936) Bemerkungen zum Vierfarbenproblem, *Jahresber. Deutsch. Math.-Verein*
**46**, 26–32.

22.

D. B. West (1985) Parameters of partial orders and graphs: packing, covering, and representation, in I. Rival (ed.), *Graphs and Orders*, D. Reidel, Dordrecht, pp. 267–350.

23.

M. Yannakakis (1982) The complexity of the partial order dimension problem, *SIAM J. Alg. Discrete Methods*
**3**, 351–358.