Coral Reefs

, Volume 12, Issue 3, pp 203–221

The geological effects of hurricanes on coral reefs and the interpretation of storm deposits

  • T. P. Scoffin

DOI: 10.1007/BF00334480

Cite this article as:
Scoffin, T.P. Coral Reefs (1993) 12: 203. doi:10.1007/BF00334480


Hurricanes occur in belts 7° to 25° north and south of the equator. Reefs growing in these belts suffer periodic damage from hurricane-generated waves and storm surge. Corals down to 20m depth may be broken and removed, branching colonies being much more susceptible to breakage than upright massive forms. Sand cays may be washed away and former storm ridges may migrate to leeward across reef flats to link with islands. Reef crest and reef front coral debris accumulate as talus at the foot of the fore-reef slope, on submarine terraces and grooves, on the intertidal reef flat as storm ridges of shingle or boulders and isolated blocks of reef framework, as accreting beach ridges of leeward migrating shingle, as lobes and wedges of debris in back-reef lagoons, as drapes of carbonate sand and mud in deep off-reef locations in the fore-reef and lagoonal areas. In addition to the coarse debris deposited, other features may aid the recognition of former hurricane events, including the assemblage of reef biota, its species composition and the structure of the skeletons; graded internal sediments in framework cavities; characteristic sequences of encrusting organisms; characteristic shapes of reef flat microatoll corals; and submarine cement crusts over truncated reef surfaces. The abundance of reef flat storm deposits whose ages cluster around 3000–4000 y BP in certain parts of the world most likely relate to a slight fall in relative sea level rather than an increase in storminess during that period. A higher frequency of storms need not result in more reef flat storm deposits. The violence of the storm relative to normal fair-weather conditions influences the extent of damage; the length of time since the previous major storm influences the amount of coral debris created; the length of time after the hurricane, and before a subsequent storm influences the degree of stabilization of reef-top storm deposits and hence their chances of preservation.

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • T. P. Scoffin
    • 1
  1. 1.Department of Geology and GeophysicsUniversity of EdinburghEdinburghScotland, UK

Personalised recommendations