, Volume 273, Issue 3, pp 571-575

Collagen fibrillogenesis in a three-dimensional fibroblast cell culture system

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The purpose of this study was to follow collagen fibril formation in a newly developed three dimensional cell culture system. Human neonatal foreskin fibroblasts were grown on a nylon mesh in Dulbecco's Modified Eagles Medium (DMEM) supplemented with 10% fetal calf serum and antibiotics. Fibrillogenesis was initiated by the addition of 50 micrograms/ml ascorbate to confluent cultures. Sample meshes were processed for electron microscopy or immuno-electron microscopy. Fibrils ≈20–30 nm in diameter, with 67 nm periodicity, were first detected five days after the addition of ascorbate. As cultures progressed, cells organized into parallel layers between which collagen fibers continued to form and increase in diameter. By day 50, fiber diameter ranged from 30 to 80 nm and large bundles were seen. No collagen fibril formation occurred in control cultures to which no ascorbate was added. However, large amounts of microfibrils were observed. Antibodies against the aminopropeptide of type I procollagen were found to bind to fibrils with diameters less than 34 nm while antibodies against the aminopropeptide of type III collagen bound primarily to fibers which ranged from 35–54 nm in diameter. We believe that this system, which morphologically resembles a normal dermis, will werve as an excellent model for the study of collagen fibrillogenesis.