, Volume 105, Issue 3, pp 302–312

A native nitrogen-fixing shrub facilitates weed invasion

Ecophysiology Original Paper

DOI: 10.1007/BF00328732

Cite this article as:
Maron, J.L. & Connors, P.G. Oecologia (1996) 105: 302. doi:10.1007/BF00328732


Invasions by exotic weedy plants frequently occur in highly disturbed or otherwise anthropogenically altered habitats. Here we present evidence that, within California coastal prairie, invasion also can be facilitated by a native nitrogen-fixing shrub, bush lupine (Lupinus arboreus). Bush lupines fix nitrogen and grow rapidly, fertilizing the sandy soil with nitrogen-rich litter. The dense lupine canopy blocks light, restricting vegetative growth under bushes. Heavy insect herbivory kills lupines, opening exposed nitrogen-rich sites within the plant community. Eventual re-establishment of lupine occurs because of an abundant and long-lived seed bank. Lupine germination, rapid growth, shading and fertilization of sites, and then death after only a few years, results in a mosaic of nutrient-rich sites that are available to invading species. To determine the role of bush lupine death and nitrogen enrichment in community composition, we examined nutrient dynamics and plant community characteristics within a site only recently colonized by lupine, comparing patches where lupines had recently died or were experimentally killed with adjacent areas lacking lupine. In experimentally killed patches, instantaneous pool sizes of exchangeable ammonium and nitrate nitrogen were higher than in adjacent sites free of lupine. Seedlings of the introduced grass Bromus diandrus accumulated 48% greater root biomass and 93% more shoot biomass when grown in a greenhouse in soil collected under experimentally killed lupines compared to B. diandrus seedlings grown in soil collected at least 1 m away from lupines. At the end of the spring growing season, total above-ground live plant biomass was more than twice as great in dead lupine patches as in the adjacent lupine-free grassland, but dead lupine patches contained 47% fewer plant species and 57% fewer native species. Sites where lupines have repeatedly died and reestablished during recent decades support an interstitial grassland community high in productivity but low in diversity, composed of mostly weedy introduced annual plants. In contrast, at a site only recently colonized by bush lupines, the interstitial grassland consists of a less productive but more diverse set of native and introduced species. We suggest that repeated bouts of lupine germination, establishment, and death can convert a rich native plant community into a less diverse collection of introduced weeds.

Key words

Biological invasion Bush lupine Facilitation Nutrient enrichment Species richness 

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  1. 1.Bodega Marine LaboratoryUniversity of CaliforniaBodega BayUSA