, Volume 104, Issue 3, pp 308-315

Slow larval growth on a suboptimal willow results in high predation mortality in the leaf beetle Galerucella lineola

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The slow growth/high mortality hypothesis predicts that herbivorous insects feeding on suboptimal host plants are subjected to higher predation mortality owing to the longer time spent in the vulnerable juvenile stages compared with conspecifics feeding on optimal plants. We tested this hypothesis for the willow-feeding leaf beetle Galerucella lineola raised on one suitable (Salix viminalis) and one unsuitable (S. dasyclados) willow species as well as on plants from an interspecific cross between the two species. Cohorts of larvae raised on caged plants (protected from enemies) and uncaged plants (exposed to enemies) were monitored daily throughout larval development in two consecutive years. Larvae raised on S. viminalis developed faster, grew larger and survived better than those raised on S. dasyclados. The suitability of the hybrid plants was intermediate to that of their parents. Our results strongly support the slow growth/high mortality hypothesis. In both years, total predation during the larval period was higher on S. dasyclados than on S. viminalis. Furthermore, the daily predation rate (i.e. the proportion of larvae preyed upon per day) was higher on S. dasyclados than on S. viminalis. When hybrid plants were included in the analysis total predation was positively correlated with both larval development time and daily predation rate. We suggest that high predation on beetles on low-quality plants is the combined result of their longer development time and elevated daily predation rate. The results are discussed in relation to the evolution of host plant selection and the paradox of sublethal plant defenses.