Skip to main content
Log in

Karyotype evolution in Australian ants

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

105 Australian ant species, including members of the important primitive genera Amblyopone and Myrmecia, were karyotyped using a C-banding air-drying technique. The observed haploid numbers in this survey ranged from 2n=84 (the highest known in the Hymenoptera) to 2n=9. Seven types of chromosome rearrangement were detected, namely: Robertsonian rearrangements, pericentric inversions, saltatory changes in constitutive heterochromatin, simple reciprocal translocations, complex translocations accompanied by significant loss of euchromatin, supernumerary (B-) chromosome variation, and chromosome deletion. Most ant karyotype evolution is explicable in terms of the first three of these. No evidence was found for polyploidy or centric dissociation being of evolutionary significance in ants. The C-band analysis supports a model in which pericentric inversions converting acrocentrics to other types greatly predominate over those with reverse effects. There appears to be little, if any, correlation between whether a species is morphologically primitive or advanced and its karyotype organization. The data provide little support for the ancestral chromosome number in ants having been high with subsequent reduction (“fusion hypothesis”), but rather suggest that the ancestral number was either very low with subsequent increase (“fission hypothesis”) or coincident with the present mode (“modal hypothesis”). Moreover, for these ant data, the modal hypothesis is interpretable as a subset of the fission hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous: Palindromes in eukaryotic DNA. Nature (Lond.) 248, 733–734 (1974)

    Google Scholar 

  • Bostock, C.: Repetitious DNA. In: Advanc. Cell Biology (D.M. Prescott, L. Goldstern and E. McConkey, eds.) 2, 153–223 (1971)

  • Bradshaw, W.W., Hsu, T.C.: Chromosomes of Peromyscus (Rodentia, Cricetidae) III. Polymorphism in Peromyscus maniculatus. Cytogenetics 11, 436–451 (1972)

    Google Scholar 

  • Bridges, C.B.: The bar “gene” a duplication. Science 83, 210–211 (1936)

    Google Scholar 

  • Britten, R.J., Kohne, D.E.: Implications of repeated nucleotide sequences. In: Handbook of molecular cytology (A. Lima-de-Faria, ed.), pp. 37–51. Amsterdam: North-Holland Publ. Comp. 1969

    Google Scholar 

  • Brown, W.L.: Revisionary notes on the ant genus Myrmecia of Australia. Bull. Mus. comp. Zool. Harvard 111, 1–35 (1953)

    Google Scholar 

  • Brown, W.L.: A review of the ants of New Zealand (Hymenoptera). Acta Hymenopterologica 1, 1–50 (1958)

    Google Scholar 

  • Brown, W.L., Taylor, R.W.: Superfamily Formicoidea. In: The insects of Australia (I.M. Mackerras ed.), pp. 951–959. Melbourne: Melbourne Univ. Press 1970

    Google Scholar 

  • Cavalier-Smith, T.: Palindromic base sequences and replication of eukaryote chromosome ends. Nature (Lond.) 250, 467–470 (1974)

    Google Scholar 

  • Church, R.B., Ryskov, A.P., Georgiev, G.P.: Structure of nuclear pre-mRNA. VI. “Reverse repeats” in animal DNA and their hybridization with double-stranded regions of pre-mRNA. Molek. Biologiya 8, 503–509 (1974)

    Google Scholar 

  • Clark, J.: The Formicidae of Australia. I. Subfamily Myrmeciinae. Melbourne: C.S.I.R.O. 1951

    Google Scholar 

  • Cooper, K.W.: Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster, and the theory of “heterochromatin”. Chromosoma (Berl.) 10, 535–588 (1959)

    Google Scholar 

  • Crozier, R.H.: An acetic acid dissociation, air-drying technique for insect chromosomes, with aceto-lactic orcein staining. Stain Technol. 43, 171–173 (1968a)

    Google Scholar 

  • Crozier, R.H.: Cytotaxonomic studies on some Australian Dolichoderine ants (Hymenoptera: Formicidae). Caryologia (Firenze) 21, 241–259 (1968b)

    Google Scholar 

  • Crozier, R.H.: Chromosome number polymorphism in an Australian ponerine ant. Canad. J. Genet. Cytol. 11, 333–339 (1969)

    Google Scholar 

  • Crozier, R.H.: Karyotypes of twenty-one ant species (Hymenoptera; Formicidae), with reviews of the known ant karyotypes. Canad. J. Genet. Cytol. 12, 109–128 (1970a)

    Google Scholar 

  • Crozier, R.H.: Pericentric rearrangement polymorphism in a North American dolichoderine ant (Hymenoptera: Formicidae). Canad. J. Genet. Cytol. 12, 541–546 (1970b)

    Google Scholar 

  • Crozier, R.H.: Hymenoptera. Animal cytogenetics (B. John, ed.), vol. 3. Insecta 7. Berlin, Stuttgart: Gebrüder Borntraeger 1975

    Google Scholar 

  • Crozier, R.H.: Genetic differentiation between populations of the ant Aphaenogaster “rudis” in the southeastern United States. Genetica (den Haag) 46, (in press)

  • Flamm, W.G.: Highly repetitive sequences of DNA in chromosomes. Int. Rev. Cytol. 32, 1–51 (1972)

    Google Scholar 

  • Forel, A.: Formicides australiens reçus de MM. Froggatt et Rowland Turner. Rev. Suisse Zool. 18, 1–94 (1910)

    Google Scholar 

  • Hsu, T.C.: Chromosome structure a possible function of constitutive heterochromatin: The bodyguard hypothesis. Genetics 79, 137–150 (1975)

    Google Scholar 

  • Hsu, T.C., Arrighi, F.E.: Distribution of constitutive heterochromatin in mammalian chromosomes. Chromosoma (Berl.) 34, 243–253 (1971)

    Google Scholar 

  • Imai, H.T.: Proposal of a new criterion for the classification of mammalian chromosomes. Ann. Rep. Nat. Inst. Genetics (Japan) No. 23, 50–52 (1973)

    Google Scholar 

  • Imai, H.T.: B-chromosomes in the myrmicine ant, Leptothorax spinosior. Chromosoma (Berl.) 45, 431–444 (1974)

    Google Scholar 

  • Imai, H.T.: Evidence for non-random localization of the centromere on mammalian chromosomes. J. theor. Biol. 49, 111–123 (1975)

    Google Scholar 

  • Imai, H.T.: Further evidence and biological significance for non-random localization of the centromere on mammalian chromosomes. J. theor. Biol. 61 (in press 1976)

  • Imai, H.T., Kubota, M.: Karyological studies of Japanese ants (Hymenoptera, Formicidae). III. Chromosoma (Berl.) 37, 193–200 (1972)

    Google Scholar 

  • Imai, H.T., Kubota, M.: Chromosome polymorphism in the ant, Pheidole nodus. Chromosoma (Berl.) 51, 391–399 (1975)

    Google Scholar 

  • John, B., Freeman, M.: Causes and consequences of Robertsonian exchange. Chromosoma (Berl.) 52, 123–136 (1975)

    Google Scholar 

  • John, B., Hewitt, G.M.: Karyotype stability and DNA variability in the Acrididae. Chromosoma (Berl.) 20, 155–172 (1966)

    Google Scholar 

  • John, B., Hewitt, G.M.: Patterns and pathways of chromosome evolution within the Orthoptera. Chromosoma (Berl.) 25, 40–74 (1968)

    Google Scholar 

  • Keyl, H.-G.: Duplikationen von Untereinheiten der chromosomalen DNS während der Evolution von Chironomus thummi. Chromosoma (Berl.) 17, 139–180 (1965)

    Google Scholar 

  • Levan, A., Fredga, K., Sandberg, A.A.: Nomenclature for centromeric position on chromosomes. Hereditas (Lund) 52, 201–220 (1964)

    Google Scholar 

  • Maruyama, T., Imai, H.T.: Karyotype evolution as a stochastic process. 45th Annual Meeting Zool. Soc. Japan, Sapporo 1974

  • Matthey, R.: The chromosome formulae of eutherian mammals. In: Cytotaxonomy and vertebrate evolution (A.B. Chiarelli and E. Capanna, eds.), pp. 531–616. London: Academic Press 1973

    Google Scholar 

  • Pardue, M.L., Gall, J.G.: Chromosomal localization of mouse satellite DNA. Science 168, 1356–1358 (1970)

    Google Scholar 

  • Patterson, J.T., Stone, W.S.: Evolution in the genus Drosophila. New York: Macmillan 1952

    Google Scholar 

  • Ritossa, F.: Crossing-over between X and Y chromosomes during ribosomal DNA magnification in Drosophila melanogaster. Proc. nat. Acad. Sci. (Wash.) 70, 1950–1954 (1973)

    Google Scholar 

  • Schmid, C.W., Manning, J.E., Davidson, N.: Inverted repeat sequences in the Drosophila genome. Cell 5, 159–172 (1975)

    Google Scholar 

  • Simpson, G.G.: The major features of evolution. New York: Columbia University Press 1953

    Google Scholar 

  • Stanley, S.M.: An explanation for Cope's rule. Evolution (Lawrence, Kans.) 27, 1–26 (1973)

    Google Scholar 

  • Thomas, C.A., Pyeritz, R.E., Wilson, D.A., Dancis, B.M., Lee, C.S., Bick, M.D., Huang, H.L., Zimm, B.H.: Cyclodromes and palindromes in chromosomes. Cold Spr. Harb. Symp. quant. Biol. 38, 353–370 (1973)

    Google Scholar 

  • Todd, N.B.: Karyotypic fissioning and canid phylogeny. J. theor. Biol. 26, 445–480 (1970)

    Google Scholar 

  • Wallace, B., Kass, T.L.: On the structure of gene control regions. Genetics 77, 541–558 (1974)

    Google Scholar 

  • Wheeler, W.M.: Ants. Their structure, development and behavior. New York: Columbia Univ. Press 1965

    Google Scholar 

  • White, M.J.D.: Animal cytology and evolution, 3rd ed. London: Cambridge University Press 1973

    Google Scholar 

  • Wilson, A.C., Bush, G.L., Case, S.M., King, M.-C.: Social structuring of mammalian populations and rate of chromosomal evolution. Proc. nat. Acad. Sci. (Wash.) 72, 5061–5065 (1975)

    Google Scholar 

  • Wilson, D.A., Thomas, C.A., Jr.: Palindromes in chromosomes. J. molec. Biol. 84, 115–144 (1974)

    Google Scholar 

  • Wilson, E.O.: The insect societies. Cambridge, Massachusetts: Harvard University Press 1971

    Google Scholar 

  • Yunis, J.J., Yasmineh, W.G.: Heterochromatin, satellite DNA and cell function. Science 174, 1200–1209 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, H.T., Crozier, R.H. & Taylor, R.W. Karyotype evolution in Australian ants. Chromosoma 59, 341–393 (1977). https://doi.org/10.1007/BF00327974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327974

Keywords

Navigation