, Volume 107, Issue 2, pp 160-169

Growth and alkaloid contents in leaves of Tabernaemontana pachysiphon Stapf (Apocynaceae) as influenced by light intensity, water and nutrient supply

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The growth of Tabernaemontana pachysiphon (Apocynaceae) plants and the alkaloid content of leaves were investigated in the greenhouse at three levels of nutrient supply under two contrasting water and light regimes. We determined height increment, above-ground biomass production, leaf size, specific leaf weight and the content of the alkaloids apparicine, A2, isovoacangine, tubotaiwine and tubotaiwine-N-oxide. The effects of major controlling factors such as light, water and nutrient supply could be directly correlated with growth and were largely independent of each other. In contrast, leaf-alkaloid contents were influenced by interdependencies among the main factors and individually affected in a synergistic or antagonistic manner which deviated from the effects on growth. The following general trends could be identified with respect to the quantitatively predominant alkaloids apparicine, tubotaiwine and isovoacangine. Increasing nutrient supply had a positive effect on both growth and alkaloid content. Drought increased alkaloid content, but retarded growth. High light intensity lowered alkaloid content but promoted growth. We investigated the relationship between primary production and the production of secondary metabolites with respect to relative and total alkaloid content as well as in relation to the leaves' nitrogen status. Our results showed that under conditions of low nutrient supply, higher proportions of leaf nitrogen were allocated to alkaloids than at moderate or high nutrient supply. Under conditions of drought and low light, all plants allocated almost equal proportions of leaf nitrogen to alkaloids, regardless of fertiliser. Total alkaloid content per plant, however, increased with fertilisation. With respect to the N-allocation strategy, we found no indication of a trade-off between primary production and the production of secondary metabolites in this species. Rather, our results are in accordance with the carbon nutrient balance hypothesis.