, Volume 95, Issue 2, pp 187-193

Carpels as leaves: meeting the carbon cost of reproduction in an alpine buttercup

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We investigated the role of photosynthesis by reproductive organs in meeting the carbon costs of sexual reproduction in the snow-buttercup, Ranunculus adoneus. The exposed green carpels of snow-buttercup flowers have 1–2 stomata each. Net carbon assimilation rates of flowers are negative during bud expansion, but rise to zero at maturity, and become positive during early fruit growth. Experimental removal of separate whorls of flower parts demonstrated that the showy, nectary-housing petals account for most of the respiration cost of flower presentation. Conversely, photosynthesis by female organs contributes to a flower's carbon balance. Dipteran pollinators of R. adoneus are most active in sunny mid-morning to mid-afternoon intervals. At this time of day, rates of carpel photosynthesis (Amax) meet respiratory costs of pollinator attraction in fully expanded flowers. Achenes remain photosynthetically active until dispersal, and positive net carbon assimilation rates characterize infructescences throughout fruit maturation. Photosynthetic rates of achenes are positively correlated with infructescence growth rates. We tested the causal basis of this relationship by experimentally shading developing infructescences. Mature achenes from shaded infructescences were 16–18% smaller than those from unshaded controls. Leaf photosynthetic rates did not differ between plants bearing shaded and unshaded seed heads. Since female reproductive organs are only 8% more costly in terms of caloric investment than male ones and contribute to their own carbon balance, it is plausible that the energy cost of male function equals or exceeds that of female function in this hermaphroditic species.