, Volume 106, Issue 4, pp 232-243

Ultrastructural investigation of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoida)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

The formation of echinoderm endoskeletons is studied using echinoid teeth as an example. Echinoid teeth grow rapidly. They consist of many calcareous elements each produced by syncytial odontoblasts. The calcification process in echinoderms needs (1) syncytial sclerocytes or odontoblasts, (2) a spacious vacuolar cavity within this syncytium, (3) an organic matrix coat in the cavity. As long as calcite is deposited, the matrix does not touch the interior face of the syncytium. The cooperation between syncytium, interior cavity and matrix coat during the mineralization process is discussed. The proposed hypothesis applies to the formation of larval skeletons, echinoderm ossicles and echinoid teeth.

When calcite deposition ceases the syncytium largely splits up into filiform processes, and the skeleton is partly exposed to the extracellular space. However, the syncytium is able to reform a continuous sheath and an equivalent of the cavity and may renew calcite deposition.

The tooth odontoblasts come from an apical cluster of proliferative cells, each possessing a cilium. The cilium is lost when the cell becomes a true odontoblast. This suggests that cilia are primitive features of echinoderm cells. The second step in calcification involves the odontoblasts giving rise to calcareous discs which unite the hitherto single tooth elements. During this process the odontoblasts immure themselves. The structures necessary for calcification are maintained until the end of the process.

The mineralizing matrix is EDTA-soluble. The applied method preserves the matrix coating the calcite but more is probably incorporated into the mineral phase and dissolved with the calcite.