Journal of Mathematical Biology

, Volume 17, Issue 2, pp 241–251

Dynamics of games and genes: Discrete versus continuous time

  • V. Losert
  • E. Akin

DOI: 10.1007/BF00305762

Cite this article as:
Losert, V. & Akin, E. J. Math. Biology (1983) 17: 241. doi:10.1007/BF00305762


It is shown that in the classical model of population genetics (Fisher-Wright-Haldane, discrete or continuous version) every solution p(t) converges to equilibrium for t → ∞. For related models of evolutionary games (with non-symmetric matrices) it is shown that the transformation that describes the dynamics is a diffeomorphism (in particular one-to-one).

Key words

Population genetics Evolutionary games Convergence to equilibrium 
Download to read the full article text

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • V. Losert
    • 1
  • E. Akin
    • 2
  1. 1.Institut für MathematikUniversität WienWienAustria
  2. 2.Mathematics DepartmentThe City CollegeNew YorkUSA

Personalised recommendations