, Volume 86, Issue 3, pp 265-274

Neurofibrillary tangles of Guamanian amyotrophic lateral sclerosis, parkinsonism-dementia and neurologically normal Guamanians contain a 4-to 4.5-kilodalton protein which is immunoreactive to anti-amyloid β/A4-protein antibodies

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Neurofibrillary tangles (NFT), one of the neurodegenerative features of Alzheimer's disease, Down's syndrome and normal aging, is a constant, widespread neuropathological finding in Guamanian amyotrophic lateral sclerosis (ALS), parkinsonism-dementia (PD) and in neurologically normal Guamanians, dying of causes other than ALS and PD. NFT in brain tissue sections of patients with Guamanian ALS and PD were immunoreactive to antibodies directed against a 43-amino acid synthetic peptide homologous to amyloid β/A4-protein (anti-SP43) associated with Alzheimer's disease. NFT extracted from frozen brain tissues of Guamanian patients with ALS and PD and from tissues of neurologically normal Guamanians were congophilic and birefringent. By negative-stain electron microscopy, NFT preparations contained bundles and/or isolated single, straight, unpaired filaments in Guamanian AlS and occasionally pairing of filaments in neurologically normal Guamanians, measuring 5–20 nm in diameter. Formic acid digestion of NFT preparations, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size-exclusion high-pressure liquid chromatography, showed a protein with an apparent molecular mass of 4-to 4.5-kDa, which by Western blot analysis was immunoreactive to anti-SP43. Immunoabsorption of purified NFT or SP43 with anti-SP43 abolished immunostaining. Our study corroborate previous data that amyloid β/A4-protein is present in NFT in Guamanian PD. Furthermore, our data indicate that amyloid β/A4-protein is present in NFT in brain tissues of patients with Guamanian ALS and in neurologically normal Gumananians, suggesting a common mechanism of amyloidogenesis with NFT formation in Alzheimer's disease and normal brain aging.

Supported in part by the Ministry for Science and Technology of the Federal Republic of Germany and the Fond der Chemischen Industrie, and the Sonderforschungsbereich 194, Deutsche Forschungsgemeinschaft (to D. C. Guiroy)