, Volume 63, Issue 4, pp 349-360

Chromosome and nucleotide sequence differentiation in genomes of polyploid Triticum species

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

The nature of genome change during polyploid evolution was studied by analysing selected species within the tribe Triticeae. The levels of genome changes examined included structural alterations (translocations, inversions), heterochromatinization, and nucleotide sequence change in the rDNA regions. These analyses provided data for evaluating models of genome evolution in polyploids in the genus Triticum, postulated on the basis of chromosome pairing at metaphase I in interspecies hybrids.

The significance of structural chromosome alterations with respect to reduced MI chromosome pairing in interspecific hybrids was assayed by determining the incidence of heterozygosity for translocations and paracentric inversions in the A and B genomes of T. timopheevii ssp. araraticum (referred to as T. araraticum) represented by two lines, 1760 and 2541, and T. aestivum cv. Chinese Spring. Line 1760 differed from Chinese Spring by translocations in chromosomes 1A, 3A, 4A, 6A, 7A, 3B, 4B, 7B and possibly 2B. Line 2541 differed from Chinese Spring by translocations in chromosomes 3A, 6A, 6B and possibly 2B. Line 1760 also differed from Chinese Spring by paracentric inversions in arms 1AL and 4AL whereas line 2541 differed by inversions in 1BL and 4AL (not all chromosomes arms were assayed). The incidence of structural changes in the A and B genomes did not coincide with the more extensive differentiation of the B genomes relative to the A genomes as reflected by chromosome pairing studies.

To assay changing degrees of heterochromatinization among species of the genus Triticum, all the diploid and polyploid species were C-banded. No general agreement was observed between the amount of heterochromatin and the ability of the respective chromosomes to pair with chromosomes of the ancestral species. Marked changes in the amount of heterochromatin were found to have occurred during the evolution of some of the polyploids.

The analysis of the rDNA region provided evidence for rapid “fixation” of new repeated sequences at two levels, namely, among the 130 bp repeated sequences of the spacer and at the level of the repeated arrays of the 9 kb rDNA units. These occurred both within a given rDNA region and between rDNA regions on nonhomologous chromosomes. The levels of change in the rDNA regions provided good precedent for expecting extensive nucleotide sequence changes associated with differentiation of Triticum genomes and these processes are argued to be the principal cause of genome differentiation as revealed by chromosome pairing studies.

Communicated by J. S. F. Barker and H. F. Linskens