, Volume 25, Issue 6, pp 445-453

Female choice for parasite-free male satin bowerbirds and the evolution of bright male plumage

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Hamilton and Zuk proposed that bright male plumage may have evolved in males of polygynous species as a result of female preferences for males that are able to demonstrate their resistance to disease. They predicted an inverse correlation between female mating preferences and the level of parasitic infection of males. We found such a correlation between the level of infection by a common ectoparasite (Myrsidea ptilonorhynchi: Menoponidae) and mating success of male satin bowerbirds (Ptilonorhynchus violaceus). In addition, we tested and were able to confirm three other predictions derived from their model: that (1) older males had fewer parasites than their younger counterparts, (2) levels of individual parasitic infection are highly correlated between years, and (3) that individuals resighted in successive years are less parasitized than those that fail to return. These results support the bright male model, but they are also consistent with two other hypotheses that may explain plumage dimorphism based on the level of parasitic infection. The correlated infection model suggests that females choose males with few ectoparasites because of a correlation between the level of ectoparasitic infection and heritable resistance to internal infections. In the parasite avoidance model, females favor parasitefree males because it lowers their own prospects for parasitic infection. Our data did not show the predicted relationship between parasite numbers with plumage quality that is needed to support the bright male hypothesis, nor did it show the inverse correlation between male condition and parasite numbers that is predicted by both the bright male and correlated infection hypotheses. Our results are most consistent with the parasite avoidance hypothesis.