, Volume 87, Issue 5, pp 484-492

Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunohistochemical study

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Activation of glial cells and white matter changes (rarefaction of the white matter) induced in the rat brain by permanent bilateral occlusion of the commom carotid arteries were immunohistochemically investigated up to 90 days. One day after ligation of the arteries, expression of the major histocompatibility complex (MHC) class I antigen in microglia increased in the white matter including the optic nerve, optic tract, corpus callosum, internal capsule, anterior commissure and traversing fiber bundles of the caudoputamen. After 3 days of occlusion, MHC class I antigen was still elevated and in addition MHC class II antigen and leukocyte common antigen were up-regulated in the microglia in these same regions. Astroglia, labeled with glial fibrillary acidic protein, increased in number in these regions after 7 days of occlusion. A few lymphocytes, labeled with CD4 or CD8 antibodies, were scattered in the neural parenchyma 1 h after occlusion. Activation of glial cells and infiltration of lymphocytes persisted after 90 days of occlusion in the white matter and the retinofugal pathway. However, cellular activation and infiltration in microinfarcts of the gray matter was less extensive and was substantially diminished 30 days after occlusion. The white matter changes were most intense in the optic nerve and optic tract, moderate in the medial part of the corpus callosum, internal capsule and anterior commissure, and slight in the fiber bundles of the caudoputamen. These results indicated that chronic cerebral hypoperfusion induced glial activation preferentially in the white matter. This activation seemed to be an early indicator of the subsequent changes in the white matter.