Mammalian Genome

, Volume 6, Issue 3, pp 157–175

The PiGMaP consortium linkage map of the pig (Sus scrofa)

Authors

  • A. L. Archibald
    • Roslin Institute (Edinburgh)
  • C. S. Haley
    • Roslin Institute (Edinburgh)
  • J. F. Brown
    • Roslin Institute (Edinburgh)
  • S. Couperwhite
    • Roslin Institute (Edinburgh)
  • H. A. McQueen
    • Roslin Institute (Edinburgh)
  • D. Nicholson
    • Roslin Institute (Edinburgh)
  • W. Coppieters
    • State University of Ghent
  • A. Van de Weghe
    • State University of Ghent
  • A. Stratil
    • Institute of Animal Physiology and Genetics
  • A. K. Winterø
    • The Royal Agricultural and Veterinary University
  • M. Fredholm
    • The Royal Agricultural and Veterinary University
  • N. J. Larsen
    • National Institute of Animal Science
  • V. H. Nielsen
    • National Institute of Animal Science
  • D. Milan
    • INRA Laboratoire de Génétique Cellulaire
  • N. Woloszyn
    • INRA Laboratoire de Génétique Cellulaire
  • A. Robic
    • INRA Laboratoire de Génétique Cellulaire
  • M. Dalens
    • INRA Laboratoire de Génétique Cellulaire
  • J. Riquet
    • INRA Laboratoire de Génétique Cellulaire
  • J. Gellin
    • INRA Laboratoire de Génétique Cellulaire
  • J. -C. Caritez
    • INRA Domaine Pluridisciplinaire du Magneraud
  • G. Burgaud
    • INRA Domaine Pluridisciplinaire du Magneraud
  • L. Ollivier
    • INRA Station de Génétique Quantitative et Appliquée
  • J. -P. Bidanel
    • INRA Station de Génétique Quantitative et Appliquée
  • M. Vaiman
    • INRA-CEA Laboratoire de Radiobiologie Appliquée
  • C. Renard
    • INRA-CEA Laboratoire de Radiobiologie Appliquée
  • H. Geldermann
    • Universität Hohenheim
  • R. Davoli
    • Universita degli Studi di Bologna
  • D. Ruyter
    • Wageningen Agricultural University
  • E. J. M. Verstege
    • Wageningen Agricultural University
  • M. A. M. Groenen
    • Wageningen Agricultural University
  • W. Davies
    • Norwegian College of Veterinary Medicine
  • B. Høyheim
    • Norwegian College of Veterinary Medicine
  • A. Keiserud
    • Norwegian College of Veterinary Medicine
  • L. Andersson
    • Swedish University of Agricultural Sciences
  • H. Ellegren
    • Swedish University of Agricultural Sciences
  • M. Johansson
    • Swedish University of Agricultural Sciences
  • L. Marklund
    • Swedish University of Agricultural Sciences
  • J. R. Miller
    • Babraham Institute
  • D. V. Anderson Dear
    • Babraham Institute
  • E. Signer
    • Department of GeneticsUniversity of Leicester
  • A. J. Jeffreys
    • Department of GeneticsUniversity of Leicester
  • C. Moran
    • University of Sydney
  • P. Le Tissier
    • University of Sydney
  • Muladno
    • University of Sydney
  • M. F. Rothschild
    • Iowa State University
  • C. K. Tuggle
    • Iowa State University
  • D. Vaske
    • Iowa State University
  • J. Helm
    • Iowa State University
  • H. -C. Liu
    • Iowa State University
  • A. Rahman
    • Iowa State University
  • T. -P. Yu
    • Iowa State University
  • R. G. Larson
    • Iowa State University
  • C. B. Schmitz
    • Iowa State University
Special Reports

DOI: 10.1007/BF00293008

Cite this article as:
Archibald, A.L., Haley, C.S., Brown, J.F. et al. Mammalian Genome (1995) 6: 157. doi:10.1007/BF00293008
  • 454 Views

Abstract

A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (∼16.5 Morgans) than the genetic map of the homogametic sex (female) (∼21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be ∼18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.

Download to read the full article text

Copyright information

© Springer-Verlag New York Inc 1995